TA的每日心情 | 开心 2019-12-3 15:20 |
---|
签到天数: 3 天 [LV.2]偶尔看看I
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
摘 要:电子产品自进入表面组装之后,大批量再流焊工艺过程中,无源片式器件的碑立现象给电路制造商增加许多麻烦。片式器件质量与尺寸不断缩小,高温无铅焊料的应用,碑立更引起人们的重视。本文对碑立的成因进行分析,介绍解决碑立的基本思路
& W% u' k0 g; T关键词:碑立,热容,温差,充氮气相再流焊。
& c+ l" \4 z& i5 e4 ~1. 引 言: p+ D' }$ q6 f. u/ {1 x
电子产品自进入表面组装之后,大批量再流焊工艺过程中,无源片式器件的碑立现象给电路制造商增加许多麻烦。
) z; \4 }+ R' ~碑立—在再流焊过程中,无源器件部分或全部被举起,如图 1 所示;小型片式器件的一引线端连接在焊盘上,而另一引线端被高高垂直举起,有时被倾斜,有时器件像石碑一样直立。
' s& g5 d" j" G' C‘石碑’这样的比喻,正是非常确切。碑立这种缺陷需要焊后返工操作,或由于需要纠正及高质量成本而被报废。! M3 Z. K) ^$ y0 C# B8 l4 J
在早期SMT制造过程,通常碑立与气相再流焊(冷凝焊)连系在一起,在众多原因中,归属于快速升温加热的原故。随着气相再流工艺的衰退,特别是强制对流工艺及先进的控温系统,表贴器件焊接的碑立现象几乎已消失。
8 v7 e/ X+ ^" E$ e# Y8 d然而,碑立问题远没有完全得到解决。由于片式器件质量与尺寸不断缩小,高温无铅焊料的应用,碑立又重新引起人们的重视。在充氮再流系统的气相再流焊工艺中,新型器件或印制板的无源片式器件越来越小,原先不希望出现的碑立现象,重新又回潮。
# W8 t* c$ D l* M2. 究其根源何在?( T1 `3 U; P' I+ W) `9 o2 N2 b9 f
众知造成碑立的原因之一是无源器件的两焊点间初始湿润的差别。不均衡的湿润状态是两焊接表面的湿润性与温度的不同所致。作为理想状态是器件两引线端同时再流形成焊点。此时,作用在两端焊接表面的湿润力/表面张力会同时作用相互抵消,于是就不会发生碑立项象。- H/ N0 p' ]" z
如果器件的一引线端与焊盘很快湿润再流,作用在形成焊点上的力将抬举器件与引线端。而另一端焊料没有熔融,通过被湿润的引线端与印制板被湿润的焊盘间表面张力,拉住固定器件。
7 I y6 S6 G* r8 U$ z3. 初始湿润的机理是什么?
4 I; l' Q0 f- i2 ^- I湿润的机理由三个重要参数;3 e4 ~1 K+ l d$ h( p1 Y
l 初始湿润的时间
9 v( S. j6 V4 E: g) [l 湿润力
' Y& a7 w% g. C. h! B. fl 完全湿润的时间4 }5 M3 d! `. Y& o f# x4 r( k
如很快完全湿润,将会导致碑立地发生,这因为完全湿润时,作用在焊点与器件上的力是最大的。2 Z' S3 s2 Q0 W# Z1 S
假定器件的一端达到完全湿润的速度明显要快于另一端,湿润力有可能直立拉住器件,这是因如果端头过焊膏过量,力作用在器件引线端直角边与顶面的缘故,而器件未被再流的一端将被抬举脱离焊盘,最终造成碑立现象。7 \: ?$ }; y( U. r
4. 热容对焊接的影响8 M" A* j+ ^/ H
图 1 碑立焊接端的显微图像" V$ R, Z4 u5 o* X4 X- a4 u% b/ X
器件任一焊接端的热容直接会影响碑立的产生。焊接的热容不均等是造成碑立的根本原因,较小热容的一端将先湿润,于是枪先对器件施加力,无源器件两引线端的热容不同的可能有;焊盘尺寸公差,器件引线端金属化公差,焊膏印刷量公差,通孔或印制板内层布局布线等。
; \6 C- F6 _$ Y( h4.1 印制板焊盘的热容9 a+ s5 l( R: j6 Y6 V
焊盘尺寸愈大,焊膏熔融的表面积愈大,则表面张力也就大。焊盘尺寸的变化很大,器件供应商会推荐与器件类型相配的焊盘尺寸规格,但是制造的公差并没规定。变动的公差会对焊盘热容产生很大的影响。& E; q/ M9 t0 e# a0 m" \! I, Y9 L
另外,焊盘尺寸与公差与器件贴装精度有关。这、种情况经常如此,但并非全是,焊盘尺寸/热容与器件规格及碑立的产生成正比例关系的。如图 2所示焊盘尺寸与推荐公差;2 J5 P# P# d7 L* F6 x
图 2 焊盘尺寸与推荐公差+ j+ n, F( W) C( Z* _5 g
4.2 器件引线端的热容、
+ j/ `% R, k( s3 Y7 d与器件类型及外形相关的热容直接影响焊接工艺的加热速度与时间。这些公差仅以正常数值表示,但是相对的,因为随着器件的小型化,那些与焊盘,金属化及贴装速度有关的尺寸参数将变得更为重要。如 图 3 所示 器件引线端类型与器件外形的数据;
/ L! b( b' F" g( M. @6 h X9 j图 3 器件引线端类型与器件外形
3 ^0 T; a: q* H# t* Y u4.3 焊膏的热容
7 F5 u; e- [$ Q! Y& K2 V9 o, N! P# I少量焊膏的焊盘要比过量焊膏的焊盘再流快得多,不论采用何种方法,焊盘沉积的焊膏必须与形成合格的焊点连接匹配,不得过量。更重要的是,在再流前,焊盘间的焊膏必须均匀。三维焊膏图像有助与工程师检测焊膏的热容,使其在控制之下。
4 ]- Q* |4 r6 C6 A4 d* f/ y虽然少量焊膏能更快速升温,但器件的贴装位置实际上在加热升温中也起到作用,器件贴装对准问题也可能会造成器件引线端的明显偏移,这样势必产生热容的不一样,结果得到两引线端间的温差扩大! K( j3 [& x' ]! {3 O7 ]
(Δt)。要克服这个问题,焊膏必须在几分之一秒内迅速熔融。
% y' H+ v& }* _5. 尽可能小的温差
1 D( O$ [; E4 u' ?: H# K: ~. l焊盘与引线端表面无氧化及清洁是将很快初始湿润,较小的表面张力,较大的湿润力,且很快完全湿润。假定器件的两引线端同样程度被氧化,有些氧化面将延迟初始湿润时间,被延迟初始湿润时间的部位将有更多时间提升焊盘或引线端的温度,以减少两端间的温差+ v" Z7 [& _( |0 `3 o
(Δt)。! ^3 W! X" B3 }7 {( m
凭经验得;较小的温差(Δt),初始湿润的时间差也小,当无源器件两端没有同样的湿润性,就可能产生碑立,因可焊性好的引线端相比之下会更快达到完全湿润。1 o4 ^' K! ~( r3 q) Y
最常见影响可湿润性的是那个因素?举例;当器件引线端金属化损坏,没有正确涂复或污染,这就减少可湿润的表面积。如图 4所示;& }) m8 M3 _2 N
可见碑立电阻器的显微图像,在抬举未被焊接的端头显示涂层减薄,降低可焊性
0 p' v+ j, r/ C: b图 4 抬举未被焊接的端头显示涂层减薄降低可焊性
% P1 c* B* x; A: }! M6. 充氮/气相再流焊1 }: t Z9 b" l8 t' G$ i1 a
在焊接的升温至再流过程中,氮能防止焊接表面重新氧化,有助加快初始湿润。气相焊工艺包括焊接过程升温的控制。与氮气氛再流类似,气相焊在升温至再流过程中能防止表面重新氧化。这两种工艺,与常规再流焊工艺比较,在进入再流过程,极少发生金属表面的氧化。籍此清洁的表面将很快湿润。# J0 {1 Y0 v" d, I s P! }
快速湿润不能提供更多时间来减少温差的减少(Δt)。额外延迟初始湿润,以减少温差(Δt)完全是最大程度减少碑立现象所必需的。所以充氮再流焊与气相焊两种工艺,可实现碑立发生的减少。
' p# C) R0 w# T: r+ R/ ~1 t. H7.温度与表面状态两因素
+ m) e' J% V6 R, V" o7 m表 1 所列两种产生碑立的因素:包括与印制板及器件的表面有关的因素 ,如可焊性,涂层的氧化及损坏。与温度有关的因素,如温差(Δt)与热耗散。如表所示,这两种因素有组合影响,焊膏的热稳定性与合金选择必须加以考虑。
# b/ Z. ^; V" v! `
2 F: t7 G$ \& h
8. 焊膏解决方案, _8 R. H9 W9 ?, S0 ]9 Y
消除碑立或最大程度减少碑立现象的发生可通过焊膏的选择实现。首先,使用具有粘着性的热稳定助焊剂系统,其二焊膏的金属粒子采用两种不同共晶点的材料;50%熔点为179℃,另一种熔点为183℃。& Q& J6 q9 L7 h
: R" W* D, B2 D# g3 ]
183℃熔融的焊料固体粒子阻碍熔融较快焊点湿润力产生的角度倾斜作用。另一个焊盘的179℃的焊膏合金在几分之秒更多时间来湿润,于是重新回复达到平衡。* S- D! @- [ i0 ?, w. ~1 W
Klein使用模型来描述碑立现象,表面张力起到重要作用。 然而排除了在熔融时焊膏的粘度的影响。0 Q: D6 t( X; `( a6 A7 X
/ f |" o0 o- X9 v: t$ O图 5 碑立模型—熔融时焊膏粘度的作用 在179℃至183℃的温度范围中,焊膏成为在Sn62液相中悬浮的混合体,这种悬浮体要比完全液相明显高的粘度,较高的粘度机械阻碍器件角度倾斜作用来平衡表面张力,所以粘度是一个重要参数应附加在此模型中,如图5所示。" ~6 \ |) z) L. p6 v) p
9.完全解决方案7 }4 @+ v; N8 ]) @) \
碑立现象的产生可通过下面三个基本原则防止;
- J, I* v8 Z" N3 c2 i7 il 控制再流焊工艺的温度加热曲线,最大程度减少温差(Δt)。
8 H! x+ u- N/ [* j9 T7 ll 控制印制板,器件,器件贴装的公差。. n% D1 G* p2 \- y) N2 k: l/ B
l 控制充氮再流焊工艺中的氧分量,应小于500ppm。
: C0 _: e# ]( x3 e' b, e碑立是一个可防止的焊接缺陷,只要认真分析原因加以解决,减少其影响,最终能达到高产能,低缺陷率及低返工成本。 |
|