EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
9 Y2 Y* V( N. [+ L+ p# mSTM32引脚说明 GPIO是通用输入/输出端口的简称,是STM32可控制的引脚。GPIO的引脚与外部硬件设备连接,可实现与外部通讯、控制外部硬件或者采集外部硬件数据的功能。
7 O' i, [! m- \7 z/ _# VSTM32F103ZET6芯片为144脚芯片,包括7个通用目的的输入/输出口(GPIO)组,分别为GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF、GPIOG,同时每组GPIO口组有16个GPIO口。通常简略称为PAx、PBx、PCx、PDx、PEx、PFx、PGx,其中x为0-15。
4 i( b; R2 q) s2 g2 dSTM32的大部分引脚除了当GPIO使用之外,还可以复用位外设功能引脚(比如串口),这部分在【STM32】STM32端口复用和重映射(AFIO辅助功能时钟) 中有详细的介绍。
0 l/ ]9 j4 `' p7 r
& o6 r1 n. F; U* V G
每个GPIO内部都有这样的一个电路结构,这个结构在本文下面会具体介绍。
- R( a. [9 \% n V6 r/ w: F8 U6 I
7 i$ {% u4 D5 c" ?0 e' a0 {
这边的电路图稍微提一下: - T. c" I( d( |# l$ d. O
保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方的二极管导通,防止不正常电压引入芯片导致芯片烧毁。但是尽管如此,还是不能直接外接大功率器件,须加大功率及隔离电路驱动,防止烧坏芯片或者外接器件无法正常工作。
: F" x: i: {4 D: i; N$ gP-MOS管和N-MOS管:由P-MOS管和N-MOS管组成的单元电路使得GPIO具有“推挽输出”和“开漏输出”的模式。这里的电路会在下面很详细地分析到。
/ ` H% Y& p" s0 [$ x# t; C/ bTTL肖特基触发器:信号经过触发器后,模拟信号转化为0和1的数字信号。但是,当GPIO引脚作为ADC采集电压的输入通道时,用其“模拟输入”功能,此时信号不再经过触发器进行TTL电平转换。ADC外设要采集到的原始的模拟信号。 2 w" z7 R, T) u- n
这里需要注意的是,在查看《STM32中文参考手册V10》中的GPIO的表格时,会看到有“FT”一列,这代表着这个GPIO口时兼容3.3V和5V的;如果没有标注“FT”,就代表着不兼容5V。
GPIO支持4种输入模式(浮空输入、上拉输入、下拉输入、模拟输入)和4种输出模式(开漏输出、开漏复用输出、推挽输出、推挽复用输出)。同时,GPIO还支持三种最大翻转速度(2MHz、10MHz、50MHz)。 " r( L0 q- s3 T$ t
每个I/O口可以自由编程,但I/O口寄存器必须按32位字被访问。 : @' a, `- q, {# ]" i7 w
GPIO_Mode_AIN 模拟输入 GPIO_Mode_IN_FLOATING 浮空输入 GPIO_Mode_IPD 下拉输入 GPIO_Mode_IPU 上拉输入 GPIO_Mode_Out_OD 开漏输出 GPIO_Mode_Out_PP 推挽输出 GPIO_Mode_AF_OD 复用开漏输出 GPIO_Mode_AF_PP 复用推挽输出 下面将具体介绍GPIO的这八种工作方式:
, G C4 l1 E) `' H浮空输入模式
* N) Y: c' B) _/ o
: r# @6 z+ z+ V* {5 E- O. d: p
浮空输入模式下,I/O端口的电平信号直接进入输入数据寄存器。也就是说,I/O的电平状态是不确定的,完全由外部输入决定;如果在该引脚悬空(在无信号输入)的情况下,读取该端口的电平是不确定的。 X% Z* E$ M4 ^/ a2 W j2 v+ |. k
+ m8 |9 d4 B. Z, \上拉输入模式
+ Q! U2 \: W/ D0 H% y
- K0 S c: S7 \1 ]
上拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在高电平;并且在I/O端口输入为低电平的时候,输入端的电平也还是低电平。
7 _* ~& T/ K; {- `6 L 0 y( v3 o r% R7 ~" J# r
下拉输入模式 " M0 x' F1 U$ ~5 {7 i1 J3 Y: T
5 @% |+ B; g( e; P' P
下拉输入模式下,I/O端口的电平信号直接进入输入数据寄存器。但是在I/O端口悬空(在无信号输入)的情况下,输入端的电平可以保持在低电平;并且在I/O端口输入为高电平的时候,输入端的电平也还是高电平。
5 h$ a% V6 Z) h! H4 Y7 D 7 {' k( t2 G+ q9 T
模拟输入模式
$ H9 z1 B9 f: o
+ y& L6 g# }2 F' x) R
模拟输入模式下,I/O端口的模拟信号(电压信号,而非电平信号)直接模拟输入到片上外设模块,比如ADC模块等等。
7 R; W, G6 T& T8 S" ]" }, C, i # Y6 w2 O, p- D5 O" {! z
开漏输出模式 4 f, l6 i; B6 ~% v+ U
8 ^8 }& p; T7 J; y! o
开漏输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经N-MOS管,最终输出到I/O端口。这里要注意N-MOS管,当设置输出的值为高电平的时候,N-MOS管处于关闭状态,此时I/O端口的电平就不会由输出的高低电平决定,而是由I/O端口外部的上拉或者下拉决定;当设置输出的值为低电平的时候,N-MOS管处于开启状态,此时I/O端口的电平就是低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,I/O端口的电平不一定是输出的电平。
# Z9 l4 @7 K* o) o 1 U# M0 l" y5 q3 w- K
开漏复用输出模式
6 Y3 B- ` {& I7 P
" }, d) g8 K! H5 s4 s$ t; {
开漏复用输出模式,与开漏输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。
$ A$ U1 h+ T8 L! J9 E推挽输出模式 # q8 f$ I$ l3 E. ?
; ~: U* K, O) n
推挽输出模式下,通过设置位设置/清除寄存器或者输出数据寄存器的值,途经P-MOS管和N-MOS管,最终输出到I/O端口。这里要注意P-MOS管和N-MOS管,当设置输出的值为高电平的时候,P-MOS管处于开启状态,N-MOS管处于关闭状态,此时I/O端口的电平就由P-MOS管决定:高电平;当设置输出的值为低电平的时候,P-MOS管处于关闭状态,N-MOS管处于开启状态,此时I/O端口的电平就由N-MOS管决定:低电平。同时,I/O端口的电平也可以通过输入电路进行读取;注意,此时I/O端口的电平一定是输出的电平。; ?1 e6 i4 E9 B5 K
$ F& h, v8 i4 e0 S1 s, \
推挽复用输出模式 2 }1 b+ k6 Q" L" w% C: s7 P
推挽复用输出模式,与推挽输出模式很是类似。只是输出的高低电平的来源,不是让CPU直接写输出数据寄存器,取而代之利用片上外设模块的复用功能输出来决定的。
1 y; J1 F7 T' C/ s
) _( C* E4 F" E) x) |
1、什么是推挽结构和推挽电路? 推挽结构一般是指两个参数相同的三极管或MOS管分别受两互补信号的控制,总是在一个三极管或MOS管导通的时候另一个截止。高低电平由输出电平决定。 ! v# Z5 d) j: V4 p6 Z5 B
推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务。电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小、效率高。输出既可以向负载灌电流,也可以从负载抽取电流。推拉式输出级既提高电路的负载能力,又提高开关速度。 $ x; N7 h- |, r d' `8 _ ^
2、开漏输出和推挽输出的区别? 开漏输出:只可以输出强低电平,高电平得靠外部电阻拉高。输出端相当于三极管的集电极。适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内); : R( D5 A. w; {( T, ]+ `
推挽输出:可以输出强高、低电平,连接数字器件。 关于推挽输出和开漏输出,最后用一幅最简单的图形来概括:
2 } k" s% i; @
* q" j; ^ o2 o: @6 ^. H" |
该图中左边的便是推挽输出模式,其中比较器输出高电平时下面的PNP三极管截止,而上面NPN三极管导通,输出电平VS+;当比较器输出低电平时则恰恰相反,PNP三极管导通,输出和地相连,为低电平。右边的则可以理解为开漏输出形式,需要接上拉。 ( @; I! T8 X& L6 u8 R
3、在STM32中选用怎样选择I/O模式? 浮空输入_IN_FLOATING ——浮空输入,可以做KEY识别,RX1 带上拉输入_IPU——IO内部上拉电阻输入 带下拉输入_IPD—— IO内部下拉电阻输入 模拟输入_AIN ——应用ADC模拟输入,或者低功耗下省电 ; H# j* j& q6 Z; C/ G) |
开漏输出_OUT_OD ——IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。可以读IO输入电平变化,实现C51的IO双向功能
- N1 `; x3 s. x' x
推挽输出_OUT_PP ——IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的 复用功能的推挽输出_AF_PP ——片内外设功能(I2C的SCL、SDA) 复用功能的开漏输出_AF_OD——片内外设功能(TX1、MOSI、MISO.SCK.SS)
+ |7 _4 M7 e( s |