EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 summerhotaaa 于 2022-10-18 10:27 编辑
) l& E$ H) |, B! d( l; t; P4 y, i7 [# o+ u/ K
板级PCBA机械应力失效 ) a( }' ]$ |. G! [: ~5 n
电子类器件(如电子元器件、PCB/PCBA、IC)是电子产品、电气控制系统的基本组成部分,一旦出现故障将直接限制设备的正常运行。电子类器件的失效受温度、湿度等多种因素影响,常见的失效模式包括机械失效(组装机械应力失效、使用机械应力失效)、电化学失效(离子残留、水汽失效)、电气失效(过电应力损伤、静电放电损伤)、热失效(元器件热失效、焊点热失效、PCB板热失效)等,本文重点介绍机械应力失效。 P" e" S3 j7 v: j
01、机械应力及其危害 7 w0 P! U* d, A9 Z
物体在受到外因(受力/载荷、温度变化等)发生变形时,其内各部分为抵抗该变形而产生相互作用的内力,以力图使物体从变形后的位置回复到变形前的位置,该作用力被称为机械应力。在板级产品PCBA生产过程中,不合适的机械应力会引发不同程度的失效或潜在失效风险。对于焊点而言,会使焊点可靠性下降;对于元器件而言,可能使元器件产生损伤;对于PCB而言,可能导致过孔断裂、印制线路损伤等。机械应力引起的失效往往难以直接确定原因,需要通过对失效样品深入分析并针对性的加以改善,从而提升板级产品PCBA的品质水平。 1 d, g8 a' a2 } Y9 w; P! c
针对板级PCBA机械应力失效,试验室常规分析流程是怎样的呢?以两个典型的案例带大家了解一下。
) I4 C- K4 v7 L
02、机械应力失效案例分享 * s8 K4 q3 l9 B! f1 A) z% z8 y
案例一 某电子产品天线异常,产线测试拦截。经外观检查,芯片本体无损伤,无外力撞击痕迹。 按压芯片后,天线信号恢复正常。将失效件管脚切片,发现焊球顶部开裂,故天线信号异常为芯片焊点开裂所致。 失效件外观
0 l6 r2 O8 s/ \/ P; T( d
失效件切片形貌
- l! L( K2 Z. S& T6 G
对芯片所在位置做应变测试,模拟产线操作动作,测试PCB板安装、锁螺钉、测试等操作的芯片应变值,发现在组装PCB板时,板上芯片位置的应变值超标。取正常板进行大力按压,测试性能异常,金相切片后发现复现板失效形貌与原始失效板相同,由此可知组装PCB板应力值超过芯片焊点的应力阈值是导致本次失效的根本原因。 . \: {+ P' p1 A! E* l; l2 c
失效件切片形貌 B# R" `4 D2 N2 N& G5 U8 ]2 F/ {
正常件复现后切片形貌 $ {0 H6 ?2 B8 I* d: c* b+ W! E- c
案例二 某产品市场返回不良品,硬件定位电容短路。万用表测试电容两端阻抗,短路。将失效电容纵向切片,发现在电容右上角陶瓷端子崩裂,并在此位置附近发现电极层熔融。 失效件外观 失效件切片形貌 ' P% W( w. r- ?' x
排查单板组装(扣屏蔽盖、扣BTB、锁螺钉)和跌落情境下失效器件的在板应变值,发现扣BTB工序时电容器件应变值超失效阈值,失效风险高。综上分析,电容器件失效的原因为产线扣合BTB的板形变量导致电容出现板级应力损伤(电容上端子出现裂纹),板通电后电容烧毁短路。 3 \5 v; G( v; P9 q5 D
失效机理 组装制造过程中的机械应力主要有以下几类: (1) 焊接过程中快速的冷热变化的温度差对PCBA的作用力; (2) PCBA不当拿取碰撞、跌落等对机械冲击的承受力; (3) PCBA包装防护不当,在运输过程中对振动的承受力; (4) 工装设备等操作对PCBA的作用力。 显然,上述两个组装失效均为工装设备等操作对PCBA的机械力所致。试验室通过模拟复现识别出失效原因,对后续质量改进具有实际的指导意义。 6 Q' s, H2 T3 o" H' S- [/ A
PCBA在贴片加工、测试、运输等过程中,会不可避免的承受各种机械应力,如果该机械应力超过了线路板所能承受极限,就会对电子元器件产生不利影响。
1 K; v0 i" `) ]+ U, V2 k3 r |