|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design' m+ Z1 [7 x. [. i2 ?! z/ ^
Overview7 R8 G0 n9 n9 t0 G0 D
System Theory+ Q: N: [+ @; j* \5 t
Effects of Nonlinearities5 |8 c2 b, t1 l+ ?) m
Gain Compression/ j6 }- W4 q: }. n" E
Desensitization and Blocking, X" m) v# L2 ~1 f) |) o4 X
CroSSModulation
- ]2 S3 S0 g6 c, ?Intermodulation. \- G2 F4 T% w( s& {- D9 }1 u
Adjacent Channel Power Rejection
. }3 t' c4 ^* J. G1 w# e+ v# |2 P5 N. NRandom Signals) T! j- G. a% G. W/ c* k
Noise and Noise Figure
4 q; @$ q% A/ T' F4 u1 {4 e1 qInput Referred Noise
% L* q) T! \2 UNoise Figure of Lossy* m, I. C' d' X% _ Q" b) I5 E) P
. b9 F& A7 m: c* ]! P8 m8 l
; `: z* ~) g8 l% ^1 [
System Theory (1)
. S9 A2 A1 V h; p+ R' u: s1 rLinear Systems
3 `# X% v0 h$ v+ G& Q: D( e1 1 x ® y 2 2 x ® y
( @9 u3 \2 `, c+ |) b. k! Q: g' ~: F1 2 1 2 ax + bx ®ay + by
9 B" F0 R* o; t. cIf inputs x1 and x2 generate outputs y1, y2
! M+ J" K$ c) X2 p! Y' ], M/ PFor a linear system output can be expressed as a linear combination of inputs* J; P2 A- I$ q6 A6 E3 `8 g* a
for all values of the constants a and b
# t* U+ |) D: o" Y. ~; {Time Invariant Systems
6 _8 E1 S+ E7 }& SFor a time invariant system time shift in input results in the same time shift in output, L. D: T5 i9 q6 o9 n4 M
x(t )® y(t ) then x(t -t )® y(t -t )
7 J+ w1 z9 @0 \) cAny system that does not satisfy this condition is nonlinear3 H. [9 G0 H1 q- X
Obs. A system is nonlinear if it has nonzero initial conditions3 r% a& S/ O7 z6 [8 N& {
for all values of t: ]" q& s b- F- I$ G% N; F
9 l% s' R: v* a
( K5 z) }. x2 e3 ^$ b# t
! M. I! A( J# f; s9 I6 C0 h; J
|
|