|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design
. |$ T1 K: x/ T3 sOverview# @1 a6 a7 [: l; U; Q" e
System Theory/ @/ ~4 y0 ~' M$ L
Effects of Nonlinearities
. M+ y0 f6 v% C6 D) Y8 AGain Compression' o+ {% \6 T% n' e! N# e
Desensitization and Blocking/ I8 Z+ Z+ M1 {
CroSSModulation: W$ r5 r' X+ N& c
Intermodulation
4 }! U3 v+ ~+ fAdjacent Channel Power Rejection
) H( I, T, v, j3 O9 TRandom Signals
% [- \/ I# O U9 Q; w6 o; ^Noise and Noise Figure- v( @# `! e( e& j; @8 A
Input Referred Noise8 q: p# l) ?8 A3 C# g
Noise Figure of Lossy
' ^; F+ `, T2 o0 G0 ^9 P* o/ e/ U' z/ U0 a- W- u# M
$ Y7 _8 O- t, lSystem Theory (1)
: S* _) u: e: W* ^Linear Systems" H/ P5 b9 j: B* ^+ V, x& C+ @
1 1 x ® y 2 2 x ® y
7 F8 o: F" |" a; D4 j, ^1 2 1 2 ax + bx ®ay + by# A8 j! Q7 O4 ]+ h
If inputs x1 and x2 generate outputs y1, y2/ [4 r: d O$ ?$ E+ h+ L3 Q
For a linear system output can be expressed as a linear combination of inputs
9 J' r$ M' }. S/ N7 B1 Jfor all values of the constants a and b
, ^. I1 j% z/ W4 y! ], eTime Invariant Systems) F" C* b" }* f. X
For a time invariant system time shift in input results in the same time shift in output n% M1 e$ o1 h* z0 R4 p
x(t )® y(t ) then x(t -t )® y(t -t )( X+ z* a& l- e8 J
Any system that does not satisfy this condition is nonlinear
: o( f `% @- R7 t$ z4 oObs. A system is nonlinear if it has nonzero initial conditions
" ~: x0 s! E9 X9 pfor all values of t
& b7 o( s- a# S
P, p7 }( w$ J- Y# c# H, `7 V
* b, L. s4 B. p. f- L6 o2 P5 G; Y% B) ~8 l: P$ {3 d" V
|
|