|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的 IC 芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是 IC 设计中的建筑师究竟是谁呢?本文接下来要针对 IC 设计做介绍。
1 t* X, \: r t: V# j9 K, V" C+ s7 o* K
. q" Z6 k, _. }' Q0 _; L
在 IC 生产流程中,IC 多由专业 IC 设计公司进行规划、设计,像是联发科、高通、Intel 等知名大厂,都自行设计各自的 IC 芯片,提供不同规格、效能的芯片给下游厂商选择。因为 IC 是由各厂自行设计,所以 IC 设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗 IC 芯片时,究竟有那些步骤?设计流程可以简单分成如下。
: B0 o4 [2 B, `: E" [/ J( j3 O- r! ~$ D [2 c
关于芯片的性能分析和介绍
) c2 z' ?4 N% ]" g
% Z. M7 u7 c' M& Q设计第一步,订定目标$ X$ w; Z# N2 D
) a: Q% T: x# U: t6 l
在 IC 设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC 设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。" c' ~3 L( K% L9 i r; t
! l' h* O1 f t6 I8 s9 `规格制定的第一步便是确定 IC 的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合 IEEE 802.11 等规范,不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是确立这颗 IC 的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。
; q3 L0 C3 q& G7 E: [' U" `4 A7 T( c* ]' M( k7 B- x" d9 }4 P& i$ U& {
设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在 IC 芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的 HDL 有 Verilog、VHDL 等,藉由程式码便可轻易地将一颗 IC 地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。
q. s0 ~& _* x4 J- z; r
8 v' B6 k5 G0 f) c8 F6 `; A: ]关于芯片的性能分析和介绍, w1 c, u" i3 w }0 r$ l1 K" K! r
9 U4 v2 h6 }( ^3 {6 X32 bits 加法器的 Verilog 范例
) R2 K- S4 p$ V% [" I3 o) e+ u
/ b9 j8 V+ r' ]; d+ A, i$ ^有了电脑,事情都变得容易* d5 j ~: s! A- x; a
3 m2 u9 Z t7 C* {* Q有了完整规画后,接下来便是画出平面的设计蓝图。在 IC 设计中,逻辑合成这个步骤便是将确定无误的 HDL code,放入电子设计自动化工具(EDA tool),让电脑将 HDL code 转换成逻辑电路,产生如下的电路图。之后,反覆的确定此逻辑闸设计图是否符合规格并修改,直到功能正确为止。
: b- n) }+ g! h) W ~. z7 B! {/ E7 B# ]- W% \9 t l) S
关于芯片的性能分析和介绍$ v7 j" N, A: J) J; e1 x0 `
& q+ H5 r) `7 ~: d% r& l
控制单元合成后的结果
' \! X# P7 r K$ l* m/ m
5 s& j# j- \& A$ _最后,将合成完的程式码再放入另一套 EDA tool,进行电路布局与绕线(Place And Route)。在经过不断的检测后,便会形成如下的电路图。图中可以看到蓝、红、绿、黄等不同颜色,每种不同的颜色就代表着一张光罩。至于光罩究竟要如何运用呢?
3 e4 N* x9 s) z" x; Y
' Y% P! \' n/ j7 y关于芯片的性能分析和介绍
1 l3 P+ ^; M% F1 l6 s2 x
2 d# b. l# P3 k. U常用的演算芯片- FFT 芯片,完成电路布局与绕线的结果
( ]( D3 f. Z& C+ K7 r: s
$ }) L4 |/ \" J+ b) H. W层层光罩,叠起一颗芯片5 _1 @1 E' X" L* _) H
7 \6 q! m5 B8 C! ]" k# B5 H% o
首先,目前已经知道一颗 IC 会产生多张的光罩,这些光罩有上下层的分别,每层有各自的任务。下图为简单的光罩例子,以积体电路中最基本的元件 CMOS 为范例,CMOS 全名为互补式金属氧化物半导体(Complementary metal–oxide–semiconductor),也就是将 NMOS 和 PMOS 两者做结合,形成 CMOS。至于什么是金属氧化物半导体(MOS)?这种在芯片中广泛使用的元件比较难说明,一般读者也较难弄清,在这里就不多加细究。' b' N9 a6 x2 `: W' ^: u
5 a, o4 [$ d; l+ ]
下图中,左边就是经过电路布局与绕线后形成的电路图,在前面已经知道每种颜色便代表一张光罩。右边则是将每张光罩摊开的样子。制作是,便由底层开始,依循上一篇 IC 芯片的制造中所提的方法,逐层制作,最后便会产生期望的芯片了。$ S- D9 \6 v/ I
& X& J' |+ E; x2 U3 P y
关于芯片的性能分析和介绍
: S+ h( H; o0 j: c1 t5 {: }2 S2 ?/ A9 f9 U, }) \# R
至此,对于 IC 设计应该有初步的了解,整体看来就很清楚 IC 设计是一门非常复杂的专业,也多亏了电脑辅助软体的成熟,让 IC 设计得以加速。IC 设计厂十分依赖工程师的智慧,这里所述的每个步骤都有其专门的知识,皆可独立成多门专业的课程,像是撰写硬体描述语言就不单纯的只需要熟悉程式语言,还需要了解逻辑电路是如何运作、如何将所需的演算法转换成程式、合成软体是如何将程式转换成逻辑闸等问题。
' f) J r* N+ a+ M
) M! e! k/ g8 M& y其中主要半导体设计公司有英特尔、高通、博通、英伟达、美满、赛灵思、Altera、联发科、海思、展讯、中兴微电子、华大、大唐、智芯、敦泰、士兰、中星、格科等。! Z' b. `+ r9 r& x* \) O7 [
2 Z# Y8 R9 b2 D1 y二、什么是晶圆?
7 C& W3 j4 b; ~6 \0 _# T! u
# m2 N' ^% U1 X$ D) y& }6 R( c! @在半导体的新闻中,总是会提到以尺寸标示的晶圆厂,如 8 寸或是 12 寸晶圆厂,然而,所谓的晶圆到底是什么东西?其中 8 寸指的是什么部分?要产出大尺寸的晶圆制造又有什么难度呢?以下将逐步介绍半导体最重要的基础——「晶圆」到底是什么。
; S& D) E, ^% d* K* O) W0 v5 J, g- Z" ]
晶圆(wafer),是制造各式电脑芯片的基础。我们可以将芯片制造比拟成用乐高积木盖房子,藉由一层又一层的堆叠,完成自己期望的造型(也就是各式芯片)。然而,如果没有良好的地基,盖出来的房子就会歪来歪去,不合自己所意,为了做出完美的房子,便需要一个平稳的基板。对芯片制造来说,这个基板就是接下来将描述的晶圆。2 X& m' d. h( m* D
) T0 W& \9 @$ Q0 Z _
(Souse:Flickr/Jonathan Stewart CC BY 2.0)
w; ?" C2 e9 x; H
- X5 z, i" d3 c0 e首先,先回想一下小时候在玩乐高积木时,积木的表面都会有一个一个小小圆型的凸出物,藉由这个构造,我们可将两块积木稳固的叠在一起,且不需使用胶水。芯片制造,也是以类似这样的方式,将后续添加的原子和基板固定在一起。因此,我们需要寻找表面整齐的基板,以满足后续制造所需的条件。+ _0 x& A: n1 V" T5 e
. {+ a/ ~, V- L
在固体材料中,有一种特殊的晶体结构──单晶(Monocrystalline)。它具有原子一个接着一个紧密排列在一起的特性,可以形成一个平整的原子表层。因此,采用单晶做成晶圆,便可以满足以上的需求。然而,该如何产生这样的材料呢,主要有二个步骤,分别为纯化以及拉晶,之后便能完成这样的材料。
, G& O4 M5 ?9 J6 V `* X# {, P. W. j& s2 r* s8 c
如何制造单晶的晶圆& \& P0 B' J0 \4 G
; w; V0 b8 M0 q9 [ X9 t
纯化分成两个阶段,第一步是冶金级纯化,此一过程主要是加入碳,以氧化还原的方式,将氧化硅转换成 98% 以上纯度的硅。大部份的金属提炼,像是铁或铜等金属,皆是采用这样的方式获得足够纯度的金属。但是,98% 对于芯片制造来说依旧不够,仍需要进一步提升。因此,将再进一步采用西门子制程(Siemens process)作纯化,如此,将获得半导体制程所需的高纯度多晶硅。" _9 m) K, _. y; f+ B$ ]+ b& f
' Y0 {* y0 u+ ?: }7 q3 o' b关于芯片的性能分析和介绍 f- a) \7 E8 p4 `- g! V. \8 z% o
3 j. R! p) f; O4 r- |1 ]6 e# Z
接着,就是拉晶的步骤。首先,将前面所获得的高纯度多晶硅融化,形成液态的硅。之后,以单晶的硅种(seed)和液体表面接触,一边旋转一边缓慢的向上拉起。至于为何需要单晶的硅种,是因为硅原子排列就和人排队一样,会需要排头让后来的人该如何正确的排列,硅种便是重要的排头,让后来的原子知道该如何排队。最后,待离开液面的硅原子凝固后,排列整齐的单晶硅柱便完成了。
# X+ |* c7 ^2 B! [8 l, X8 \- S' [* B' Y0 b
U! I& p+ [! Y9 u$ f然而,8寸、12寸又代表什么东西呢?他指的是我们产生的晶柱,长得像铅笔笔桿的部分,表面经过处理并切成薄圆片后的直径。至于制造大尺寸晶圆又有什么难度呢?如前面所说,晶柱的制作过程就像是在做棉花糖一样,一边旋转一边成型。有制作过棉花糖的话,应该都知道要做出大而且扎实的棉花糖是相当困难的,而拉晶的过程也是一样,旋转拉起的速度以及温度的控制都会影响到晶柱的品质。也因此,尺寸愈大时,拉晶对速度与温度的要求就更高,因此要做出高品质 12 寸晶圆的难度就比 8 寸晶圆还来得高。
3 x# b9 i- E- \. c9 \
/ _3 z' o$ @+ T只是,一整条的硅柱并无法做成芯片制造的基板,为了产生一片一片的硅晶圆,接着需要以钻石刀将硅晶柱横向切成圆片,圆片再经由抛光便可形成芯片制造所需的硅晶圆。经过这么多步骤,芯片基板的制造便大功告成,下一步便是堆叠房子的步骤,也就是芯片制造。至于该如何制作芯片呢?
- |& I6 I& Q/ ?6 V, s* O9 I( D8 ?0 C' \
三、层层堆叠打造的芯片* \( u$ s1 T, W2 ^( B
1 H$ V4 w2 o/ X0 {2 o8 Y# j
在介绍过硅晶圆是什么东西后,同时,也知道制造 IC 芯片就像是用乐高积木盖房子一样,藉由一层又一层的堆叠,创造自己所期望的造型。然而,盖房子有相当多的步骤,IC 制造也是一样,制造 IC 究竟有哪些步骤?本文将将就 IC 芯片制造的流程做介绍。
) E& }( a% z& ^/ Q
S* F) R, @$ c$ P, L在开始前,我们要先认识 IC 芯片是什么。IC,全名积体电路(Integrated Circuit),由它的命名可知它是将设计好的电路,以堆叠的方式组合起来。藉由这个方法,我们可以减少连接电路时所需耗费的面积。下图为 IC 电路的 3D 图,从图中可以看出它的结构就像房子的樑和柱,一层一层堆叠,这也就是为何会将 IC 制造比拟成盖房子。
- g. P3 P7 @- S( v7 v) N1 _# r
从上图中 IC 芯片的 3D 剖面图来看,底部深蓝色的部分就是上一篇介绍的晶圆,从这张图可以更明确的知道,晶圆基板在芯片中扮演的角色是何等重要。至于红色以及土黄色的部分,则是于 IC 制作时要完成的地方。8 v1 j/ i; f D
$ ~ l% W9 m! U首先,在这里可以将红色的部分比拟成高楼中的一楼大厅。一楼大厅,是一栋房子的门户,出入都由这裡,在掌握交通下通常会有较多的机能性。因此,和其他楼层相比,在兴建时会比较复杂,需要较多的步骤。在 IC 电路中,这个大厅就是逻辑闸层,它是整颗 IC 中最重要的部分,藉由将多种逻辑闸组合在一起,完成功能齐全的 IC 芯片。" `8 x N$ c) C4 e, }- a
1 v. x/ D0 t% v
黄色的部分,则像是一般的楼层。和一楼相比,不会有太复杂的构造,而且每层楼在兴建时也不会有太多变化。这一层的目的,是将红色部分的逻辑闸相连在一起。之所以需要这么多层,是因为有太多线路要连结在一起,在单层无法容纳所有的线路下,就要多叠几层来达成这个目标了。在这之中,不同层的线路会上下相连以满足接线的需求。
1 i4 ^0 x; v" U4 t; c2 L1 y1 x
1 v' ?# \* z6 ~' t% t* l: ], k: M/ E分层施工,逐层架构 S, t2 z1 p- e/ X) L7 v
& j0 ^0 T) A& Q' }- @7 m6 @知道 IC 的构造后,接下来要介绍该如何制作。试想一下,如果要以油漆喷罐做精细作图时,我们需先割出图形的遮盖板,盖在纸上。接着再将油漆均匀地喷在纸上,待油漆乾后,再将遮板拿开。不断的重复这个步骤后,便可完成整齐且复杂的图形。制造 IC 就是以类似的方式,藉由遮盖的方式一层一层的堆叠起来。
! w1 B" B, f- L4 g/ }8 H
! g. V9 A" M0 t! @) K关于芯片的性能分析和介绍& ?: j: g* C1 m% b% F; O* ~
' j4 o! X4 p" l& e8 X# u( E
制作 IC 时,可以简单分成以上 4 种步骤。虽然实际制造时,制造的步骤会有差异,使用的材料也有所不同,但是大体上皆采用类似的原理。这个流程和油漆作画有些许不同,IC 制造是先涂料再加做遮盖,油漆作画则是先遮盖再作画。以下将介绍各流程。
: A/ Q3 \5 c- C8 h& x
0 c* z; m, M' V V: f+ L0 g金属溅镀:将欲使用的金属材料均匀洒在晶圆片上,形成一薄膜。( }4 r" U% a) H! q4 m; @2 G
+ X6 |* @7 U2 x9 h. L4 K7 o
涂布光阻:先将光阻材料放在晶圆片上,透过光罩(光罩原理留待下次说明),将光束打在不要的部分上,破坏光阻材料结构。接着,再以化学药剂将被破坏的材料洗去。9 F/ @4 l( D2 y
% r4 ^& |. g4 P5 z( s0 J6 n蚀刻技术:将没有受光阻保护的硅晶圆,以离子束蚀刻。 o1 F0 U7 l8 j+ A- p) B
: A9 }2 n }+ c/ s1 J光阻去除:使用去光阻液皆剩下的光阻溶解掉,如此便完成一次流程。. @8 A; U& v9 y6 F6 [
4 p! g6 s/ h% G( O. k B, ?4 u
最后便会在一整片晶圆上完成很多 IC 芯片,接下来只要将完成的方形 IC 芯片剪下,便可送到封装厂做封装,至于封装厂是什么东西?就要待之后再做说明啰。
) U* x( k! E6 G; p$ S3 K& c6 O) P8 @& m4 f7 ]" f
其中,主要晶圆代工厂有格罗方德、三星电子、Tower Jazz、Dongbu、美格纳、IBM、富士通、英特尔、海力士、台积电、联电、中芯国际、力晶、华虹、德茂、武汉新芯、华微、华立、力芯。
+ Y% N; `' i1 r# K2 o6 x+ I6 `5 i7 J: O. M4 U$ _ P
四、纳米制程是什么?
& I& h5 i" g3 q+ P' m
5 N0 e1 [" r& J: a+ ^三星以及台积电在先进半导体制程打得相当火热,彼此都想要在晶圆代工中抢得先机以争取订单,几乎成了 14 纳米与 16 纳米之争,然而 14 纳米与 16 纳米这两个数字的究竟意义为何,指的又是哪个部位?而在缩小制程后又将来带来什么好处与难题?以下我们将就纳米制程做简单的说明。
" y, W, g- H) R0 g) P+ H" i* `" k& e* {. x( ~0 z
纳米到底有多细微?
* K" q T, x: r& `# J, Q# l! @
) v2 W8 Q+ d {' U9 {4 n在开始之前,要先了解纳米究竟是什么意思。在数学上,纳米是 0.000000001 公尺,但这是个相当差的例子,毕竟我们只看得到小数点后有很多个零,却没有实际的感觉。如果以指甲厚度做比较的话,或许会比较明显。
1 b( ?: S( G, c1 {0 W/ ~" F7 X9 L! Q2 o, L/ Y: Q& x+ Z" ]. w
用尺规实际测量的话可以得知指甲的厚度约为 0.0001 公尺(0.1 毫米),也就是说试着把一片指甲的侧面切成 10 万条线,每条线就约等同于 1 纳米,由此可略为想像得到 1 纳米是何等的微小了。. T; x4 V% p) U7 x8 _- @5 l
, ]. M, }; t# b) ^8 o& l! l A
知道纳米有多小之后,还要理解缩小制程的用意,缩小电晶体的最主要目的,就是可以在更小的芯片中塞入更多的电晶体,让芯片不会因技术提升而变得更大;其次,可以增加处理器的运算效率;再者,减少体积也可以降低耗电量;最后,芯片体积缩小后,更容易塞入行动装置中,满足未来轻薄化的需求。
) O0 |5 O; L* q& e
5 u4 v. R0 y! d w3 O$ f9 z H再回来探究纳米制程是什么,以 14 纳米为例,其制程是指在芯片中,线最小可以做到 14 纳米的尺寸,下图为传统电晶体的长相,以此作为例子。缩小电晶体的最主要目的就是为了要减少耗电量,然而要缩小哪个部分才能达到这个目的?左下图中的 L 就是我们期望缩小的部分。藉由缩小闸极长度,电流可以用更短的路径从 Drain 端到 Source 端(有兴趣的话可以利用 Google 以 MOSFET 搜寻,会有更详细的解释)。5 y* b9 K* b- ?' L" i' n
. l8 [( p! L! `9 J. Z关于芯片的性能分析和介绍1 W5 g( g( V* s" `' h
5 ]0 z1 p: P0 W- ~* n9 T6 f
此外,电脑是以 0 和 1 作运算,要如何以电晶体满足这个目的呢?做法就是判断电晶体是否有电流流通。当在 Gate 端(绿色的方块)做电压供给,电流就会从 Drain 端到 Source 端,如果没有供给电压,电流就不会流动,这样就可以表示 1 和 0。(至于为什么要用 0 和 1 作判断,有兴趣的话可以去查布林代数,我们是使用这个方法作成电脑的)" H# b$ A4 y* J5 d- ]4 O
) P/ H* [! r; x尺寸缩小有其物理限制
' q0 U: B6 i) }3 v5 i0 z9 Z( `. W( p3 ^; P% ^& } M7 u9 I! h9 f
不过,制程并不能无限制的缩小,当我们将电晶体缩小到 20 纳米左右时,就会遇到量子物理中的问题,让电晶体有漏电的现象,抵销缩小 L 时获得的效益。作为改善方式,就是导入 FinFET(Tri-Gate)这个概念,如右上图。在 Intel 以前所做的解释中,可以知道藉由导入这个技术,能减少因物理现象所导致的漏电现象。
! w3 _2 ~5 h. m1 ^1 A$ g# e5 j
2 b/ l. j: a5 Q/ Y' j8 J关于芯片的性能分析和介绍$ T% L; @' X' g g5 ~
$ ^( K2 F& n4 L$ A x; i' p2 d更重要的是,藉由这个方法可以增加 Gate 端和下层的接触面积。在传统的做法中(左上图),接触面只有一个平面,但是采用 FinFET(Tri-Gate)这个技术后,接触面将变成立体,可以轻易的增加接触面积,这样就可以在保持一样的接触面积下让 Source-Drain 端变得更小,对缩小尺寸有相当大的帮助。- r! n: ]0 p+ O9 }+ `4 V+ C$ p' m" ]
3 K* J: F# R' L2 Z
最后,则是为什么会有人说各大厂进入 10 纳米制程将面临相当严峻的挑战,主因是 1 颗原子的大小大约为 0.1 纳米,在 10 纳米的情况下,一条线只有不到 100 颗原子,在制作上相当困难,而且只要有一个原子的缺陷,像是在制作过程中有原子掉出或是有杂质,就会产生不知名的现象,影响产品的良率。
" L6 W+ _' \0 v/ [/ z8 \! U; u* l. @4 [- ~
如果无法想像这个难度,可以做个小实验。在桌上用 100 个小珠子排成一个 10×10 的正方形,并且剪裁一张纸盖在珠子上,接着用小刷子把旁边的的珠子刷掉,最后使他形成一个 10×5 的长方形。这样就可以知道各大厂所面临到的困境,以及达成这个目标究竟是多么艰巨。! b5 G* O0 A8 K- [
7 S7 O2 z3 o- X2 @6 u随着三星以及台积电在近期将完成 14 纳米、16 纳米 FinFET 的量产,两者都想争夺 Apple 下一代的 iPhone 芯片代工,我们将看到相当精彩的商业竞争,同时也将获得更加省电、轻薄的手机,要感谢摩尔定律所带来的好处呢。2 {' P$ F2 y1 m R% p
' a, q1 c5 |1 T- }3 J- h3 }五、告诉你什么是封装
& Y2 P2 ~! G6 t& b0 ?, c' h$ Q7 H9 i; I) c7 h
经过漫长的流程,从设计到制造,终于获得一颗 IC 芯片了。然而一颗芯片相当小且薄,如果不在外施加保护,会被轻易的刮伤损坏。此外,因为芯片的尺寸微小,如果不用一个较大尺寸的外壳,将不易以人工安置在电路板上。因此,本文接下来要针对封装加以描述介绍。/ V7 H6 ~# _' i- K6 r
" y! u$ w# w+ o
目前常见的封装有两种,一种是电动玩具内常见的,黑色长得像蜈蚣的 DIP 封装,另一为购买盒装 CPU 时常见的 BGA 封装。至于其他的封装法,还有早期 CPU 使用的 PGA(Pin Grid Array;Pin Grid Array)或是 DIP 的改良版 QFP(塑料方形扁平封装)等。因为有太多种封装法,以下将对 DIP 以及 BGA 封装做介绍。
# g" V0 @) m* c2 A% ?8 F8 K$ y% v/ j* X) n/ k$ R3 L
传统封装,历久不衰- _9 a- X/ r z3 V+ C" S+ `; [
6 p# |( I) q; B0 Z7 }$ r; H! N8 p首先要介绍的是双排直立式封装(Dual Inline Package;DIP),从下图可以看到采用此封装的 IC 芯片在双排接脚下,看起来会像条黑色蜈蚣,让人印象深刻,此封装法为最早采用的 IC 封装技术,具有成本低廉的优势,适合小型且不需接太多线的芯片。但是,因为大多采用的是塑料,散热效果较差,无法满足现行高速芯片的要求。因此,使用此封装的,大多是历久不衰的芯片,如下图中的 OP741,或是对运作速度没那么要求且芯片较小、接孔较少的 IC 芯片。8 Y' S9 m. R, H7 z# K3 ~4 v
' s- {9 m! z' }* }, E至于球格阵列(Ball Grid Array,BGA)封装,和 DIP 相比封装体积较小,可轻易的放入体积较小的装置中。此外,因为接脚位在芯片下方,和 DIP 相比,可容纳更多的金属接脚
3 R3 O0 K" A4 Z7 @1 n0 j
- p: [2 [% L9 K4 L$ _相当适合需要较多接点的芯片。然而,采用这种封装法成本较高且连接的方法较复杂,因此大多用在高单价的产品上。
( o5 l, V! x2 ~( ~- c' B5 P: }- Q2 K! [/ p+ _3 `' h+ x
行动装置兴起,新技术跃上舞台
! v0 z4 Q5 M2 E$ _( p) v1 x* j9 U# y' r' l6 b# @, j& T8 @
然而,使用以上这些封装法,会耗费掉相当大的体积。像现在的行动装置、穿戴装置等,需要相当多种元件,如果各个元件都独立封装,组合起来将耗费非常大的空间,因此目前有两种方法,可满足缩小体积的要求,分别为 SoC(System On Chip)以及 SiP(System In Packet)。3 k8 B1 f2 \0 j! y
! ?( |2 i' t5 ?& U在智慧型手机刚兴起时,在各大财经杂志上皆可发现 SoC 这个名词,然而 SoC 究竟是什么东西?简单来说,就是将原本不同功能的 IC,整合在一颗芯片中。藉由这个方法,不单可以缩小体积,还可以缩小不同 IC 间的距离,提升芯片的计算速度。至于制作方法,便是在 IC 设计阶段时,将各个不同的 IC 放在一起,再透过先前介绍的设计流程,制作成一张光罩。2 ?; ` M7 d5 n# b( R
2 U) b P1 Y1 }$ m然而,SoC 并非只有优点,要设计一颗 SoC 需要相当多的技术配合。IC 芯片各自封装时,各有封装外部保护,且 IC 与 IC 间的距离较远,比较不会发生交互干扰的情形。但是,当将所有 IC 都包装在一起时,就是噩梦的开始。IC 设计厂要从原先的单纯设计 IC,变成了解并整合各个功能的 IC,增加工程师的工作量。此外,也会遇到很多的状况,像是通讯芯片的高频讯号可能会影响其他功能的 IC 等情形。0 z# n9 ^, N/ ?
* o: B4 {( b3 d此外,SoC 还需要获得其他厂商的 IP(intellectual property)授权,才能将别人设计好的元件放到 SoC 中。因为制作 SoC 需要获得整颗 IC 的设计细节,才能做成完整的光罩,这同时也增加了 SoC 的设计成本。或许会有人质疑何不自己设计一颗就好了呢?因为设计各种 IC 需要大量和该 IC 相关的知识,只有像 Apple 这样多金的企业,才有预算能从各知名企业挖角顶尖工程师,以设计一颗全新的 IC,透过合作授权还是比自行研发划算多了。
' O' b9 _/ g" j' q7 O$ h
/ T: [+ c) M& v. r+ M: B折衷方案,SiP 现身: K7 p- M3 ~& p) v4 |$ o' w
3 K' ^# O5 [ L
作为替代方案,SiP 跃上整合芯片的舞台。和 SoC 不同,它是购买各家的 IC,在最后一次封装这些 IC,如此便少了 IP 授权这一步,大幅减少设计成本。此外,因为它们是各自独立的 IC,彼此的干扰程度大幅下降。
" |6 t8 ]3 F( F- S8 B* G5 t5 O# S/ s/ j, g
采用 SiP 技术的产品,最着名的非 Apple Watch 莫属。因为 Watch 的内部空间太小,它无法采用传统的技术,SoC 的设计成本又太高,SiP 成了首要之选。藉由 SiP 技术,不单可缩小体积,还可拉近各个 IC 间的距离,成为可行的折衷方案。下图便是 Apple Watch 芯片的结构图,可以看到相当多的 IC 包含在其中。
- V4 z' m$ G: ~* O' g3 ~
# j5 x1 u+ Z& e! I2 O关于芯片的性能分析和介绍7 S$ h! C5 {: q" x
9 _: A3 D4 S2 J3 _; u, W完成封装后,便要进入测试的阶段,在这个阶段便要确认封装完的 IC 是否有正常的运作,正确无误之后便可出货给组装厂,做成我们所见的电子产品。其中主要的半导体封装与测试企业有安靠、星科金朋、J-devices、Unisem、Nepes、日月光、力成、南茂、颀邦、京元电子、福懋、菱生精密、矽品、长电、优特。
% l% d6 _0 R# B) D- A' @
8 l* P: E) h* S9 b) j至此,半导体产业便完成了整个生产的任务。
- ]$ O$ d( z: E# v6 S( Q- o |
|