|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
* n5 ]& F) ?2 u( N* x电子元器件的失效规律9 c% ~, J6 p6 H+ F0 Q
1 浴盆曲线
1 U& |- ?4 d; F8 Q" b# I& k2 [ D为了研究电子元器件的可靠性,就要掌握元器件失效的客观规律,分析产品的失效原因,以便进一步提高元器件的可靠性。
* c8 b9 }4 u6 }0 B5 Z- \8 y7 s虽然每个电子元器件的失效是个随机事件,并且是偶然发生的,但大量元器件的失效却呈现出一定的规律性。从产品的寿命特征来分析,大量使用和试验结果表明,电子元器件失效率曲线的特征是两端高,中间低,呈浴盆状,习惯称为“浴盆曲线”,其形状如图2.3所示。: X% \# W- ]& @8 {6 T$ M. }
$ x6 ~2 K# w( Z/ W7 j" n( Y
" R& t4 @0 a/ E& I
+ Q8 H" V; K' o- n* C从曲线上可以看出,电子元器件的失效率随时间的发展变化大致可以分为三个阶段:即早期失效期、偶然失效期、耗损(磨损)失效期。在不同时期产品呈现不同的失效规律,尽管给电子元器件施加的应力没有变。/ D2 m- o! ~2 T. D' t) s5 K
2 早期失效期
; _8 l) f5 {3 t' M早期失效期出现在产品开始工作的初期,其特点是失效率高,可靠性低,且产品随着试验时间或工作时间的增加失效率迅速下降。产品发生早期失效的原因主要是设计、制造工艺上的缺陷或者元件、材料、结构上的缺陷所致(例如,元器件所使用的材料纯度达不到要求,或制造中混入杂质、产生的缺陷和工艺控制不严格等)。早期失效的元器件或材料一般可以通过加强对原材料和工艺的检验,或通过可靠性筛选等办法来加以淘汰。但最根本的办法是找出导致早期失效的原因,采取相应措施加以消除,从而使失效率降低且产品稳定。
. w, f% I" U9 h+ T早期失效期的失效率分布函数与m<1的威布尔(Weibull)分布函数所描述的曲线相同。9 u v# o9 S1 M" _
3 偶然失效期 P) i3 r- A2 K. v! W' d* i
偶然失效期出现在早期失效期之后,是产品的正常工作期,其特点是失效率比早期失效率小得多,且产品稳定。失效率几乎与时间无关,可近似为一常数。通常所指的使用寿命就是这一时期,这个时期的失效由偶然不确定因素引起,失效发生的时间也是随机的,故称为偶然失效期。0 |! P7 _4 ]! N/ r$ g" F, i
偶然失效期产品的失效规律符合指数分布规律。+ X" \, Q0 L7 L+ K
4 耗损失效期$ ~# @3 Z, O* A! F; G* P
耗损失效期出现在产品的后期,其特点刚好与早期失效期相反。失效率随试验或工作时间增加而迅速上升,出现大批失效。耗损失效是由于产品长期使用而产生的损耗、磨损、老化、疲劳等原因所引起的。它是构成元器件本身的材料长期化学、物理不可逆变化所造成的,是产品寿命的“终了”。& |) l1 z3 X2 j
耗损失效期的失效概率分布函数与m>1的威布尔函数所描述的曲线相同。/ q0 R( M2 c; J5 X
但是,对于实际电子产品并不一定都出现上述三个阶段。例如,工艺质量且控制很好的金属膜电阻有时就不出现早期失效期,又如某些半导体器件就没有发生耗损失效期。至于个别产品由于设计、生产工艺不合理,只有早期失效期和耗损失效期,这是由于产品质量过于低劣,此种产品不能正常使用。从上述“浴盆曲线”也可看出,在成批产品中,有些产品的失效率曲线是递增型、递减型和常数型,而宏观表现出来的是由三种类型的失效率曲线叠加而成,如图2.4所示。8 | @6 f; E, \; _$ \5 a" I& y, b
4 O5 s+ f$ | ?: J- Y" }7 b( C) }- F
( K$ m" P$ f& U |
|