|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
/ Y5 Q% }( u% m1 ]7 i链表是C语言编程中常用的数据结构,比如我们要建一个整数链表,一般可能这么定义:
/ w! E! q# P6 p4 f ^: Q& y
3 E% Z4 b4 _$ W) J- Y% n8 {, U- struct int_node {
- int val;
- struct int_node *next;
- };
$ O3 C9 d" i' G4 h' V* X; v 1 ], ]+ K) R- L: g$ D I
5 D. s1 e3 \0 s3 U为了实现链表的插入、删除、遍历等功能,另外要再实现一系列函数,比如:
# Q( W% R, T) h2 |# ]+ H: I! l& r3 t
- void insert_node(struct int_node **head, int val);
- void delete_node(struct int_node *head, struct int_node *current);
- void access_node(struct int_node *head)
- {
- struct int_node *node;
- for (node = head; node != NULL; node = node->next) {
- // do something here
- }
- }
& |5 k+ F4 w5 S% x, F3 c
0 P, {% v9 C4 ~
9 h" q1 a4 X1 L2 e+ y 如果我们的代码里只有这么一个数据结构的话,这样做当然没有问题,但是当代码的规模足够大,需要管理很多种链表,难道需要为每一种链表都要实现一套插入、删除、遍历等功能函数吗?, ^, _, [5 p) v4 U; i- K; K
" n% _/ V8 I" U4 s$ S
熟悉C++的同学可能会说,我们可以用标准模板库啊,但是,我们这里谈的是C,在C语言里有没有比较好的方法呢?/ j1 r& d, r5 u7 P& a- J* k
/ P+ i3 x* T% F6 |: c
Mr.Dave在他的博客里介绍了自己的实现,这个实现是个很好的方案,各位不妨可以参考一下。在本文中,我们把目光投向当今开源界最大的C项目--Linux Kernel,看看Linux内核如何解决这个问题。
8 q* u$ U" w" C4 c6 O% H- n$ M. J' {; j X
Linux内核中一般使用双向链表,声明为struct list_head,这个结构体是在include/linux/types.h中定义的,链表的访问是以宏或者内联函数的形式在include/linux/list.h中定义。- o+ [- S) k2 ~0 @% J7 f5 H
% u; `$ }9 v- Y7 B( f8 P- struct list_head {
- struct list_head *next, *prev;
- };2 H$ p; b/ S0 `
1 j; c! b6 O `/ |6 Y
x: w$ f, p2 W8 {5 DLinux内核为链表提供了一致的访问接口。, f. ]9 d3 P3 k- B. C) A
# D4 t a$ f/ Q2 w8 ~) _1 p) W
- void INIT_LIST_HEAD(struct list_head *list);
- void list_add(struct list_head *new, struct list_head *head);
- void list_add_tail(struct list_head *new, struct list_head *head);
- void list_del(struct list_head *entry);
- int list_empty(const struct list_head *head);! M4 {: [+ c& y) ?7 R$ M+ i' }; ~
! A" D: c1 S% z0 \3 D2 j3 @! U. S- O7 A2 s u+ b) D
以上只是从Linux内核里摘选的几个常用接口,更多的定义请参考Linux内核源代码。8 R4 G* \$ Y+ ]3 ~. x
. d- s$ @, l' q: ]我们先通过一个简单的实作来对Linux内核如何处理链表建立一个感性的认识。
5 Z; y P- F( e5 ^
/ u" H1 B; m6 [# S. k- N/ G+ H- #include <stdio.h>
- #include "list.h"
- struct int_node {
- int val;
- struct list_head list;
- };
- int main()
- {
- struct list_head head, *plist;
- struct int_node a, b;
- a.val = 2;
- b.val = 3;
- INIT_LIST_HEAD(&head);
- list_add(&a.list, &head);
- list_add(&b.list, &head);
- list_for_each(plist, &head) {
- struct int_node *node = list_entry(plist, struct int_node, list);
- printf("val = %d\n", node->val);
- }
- return 0;
- }
7 h. F/ y# J7 v5 q
) |& n o5 d& {6 G( ^$ V) _3 y- }% q) S; J
看完这个实作,是不是觉得在C代码里管理一个链表也很简单呢?6 @! w1 H( b! t \2 L
* v [& L2 \7 f) U+ D代码中包含的头文件list.h是我从Linux内核里抽取出来并做了一点修改的链表处理代码,现附在这里给大家参考,使用的时候只要把这个头文件包含到自己的工程里即可。2 p" q* z, x1 |0 O
- ]/ F3 r7 m& h, ~, u
- #ifndef __C_LIST_H
- #define __C_LIST_H
- typedef unsigned char u8;
- typedef unsigned short u16;
- typedef unsigned int u32;
- typedef unsigned long size_t;
- #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
- /**
- * container_of - cast a member of a structure out to the containing structure
- * @ptr: the pointer to the member.
- * @type: the type of the container struct this is embedded in.
- * @member: the name of the member within the struct.
- *
- */
- #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))
- /*
- * These are non-NULL pointers that will result in page faults
- * under normal circumstances, used to verify that nobody uses
- * non-initialized list entries.
- */
- #define LIST_POISON1 ((void *) 0x00100100)
- #define LIST_POISON2 ((void *) 0x00200200)
- struct list_head {
- struct list_head *next, *prev;
- };
- /**
- * list_entry - get the struct for this entry
- * @ptr: the &struct list_head pointer.
- * @type: the type of the struct this is embedded in.
- * @member: the name of the list_struct within the struct.
- */
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
- #define LIST_HEAD_INIT(name) { &(name), &(name) }
- #define LIST_HEAD(name) \
- struct list_head name = LIST_HEAD_INIT(name)
- static inline void INIT_LIST_HEAD(struct list_head *list)
- {
- list->next = list;
- list->prev = list;
- }
- /**
- * list_for_each - iterate over a list
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each(pos, head) \
- for (pos = (head)->next; pos != (head); pos = pos->next)
- /**
- * list_for_each_r - iterate over a list reversely
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each_r(pos, head) \
- for (pos = (head)->prev; pos != (head); pos = pos->prev)
- /*
- * Insert a new entry between two known consecutive entries.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_add(struct list_head *new,
- struct list_head *prev,
- struct list_head *next)
- {
- next->prev = new;
- new->next = next;
- new->prev = prev;
- prev->next = new;
- }
- /**
- * list_add - add a new entry
- * @new: new entry to be added
- * @head: list head to add it after
- *
- * Insert a new entry after the specified head.
- * This is good for implementing stacks.
- */
- static inline void list_add(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head, head->next);
- }
- /**
- * list_add_tail - add a new entry
- * @new: new entry to be added
- * @head: list head to add it before
- *
- * Insert a new entry before the specified head.
- * This is useful for implementing queues.
- */
- static inline void list_add_tail(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head->prev, head);
- }
- /*
- * Delete a list entry by making the prev/next entries
- * point to each other.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_del(struct list_head * prev, struct list_head * next)
- {
- next->prev = prev;
- prev->next = next;
- }
- /**
- * list_del - deletes entry from list.
- * @entry: the element to delete from the list.
- * Note: list_empty on entry does not return true after this, the entry is
- * in an undefined state.
- */
- static inline void list_del(struct list_head *entry)
- {
- __list_del(entry->prev, entry->next);
- entry->next = LIST_POISON1;
- entry->prev = LIST_POISON2;
- }
- /**
- * list_empty - tests whether a list is empty
- * @head: the list to test.
- */
- static inline int list_empty(const struct list_head *head)
- {
- return head->next == head;
- }
- static inline void __list_splice(struct list_head *list,
- struct list_head *head)
- {
- struct list_head *first = list->next;
- struct list_head *last = list->prev;
- struct list_head *at = head->next;
- first->prev = head;
- head->next = first;
- last->next = at;
- at->prev = last;
- }
- /**
- * list_splice - join two lists
- * @list: the new list to add.
- * @head: the place to add it in the first list.
- */
- static inline void list_splice(struct list_head *list, struct list_head *head)
- {
- if (!list_empty(list))
- __list_splice(list, head);
- }
- #endif // __C_LIST_H7 \8 I2 W7 I( l" S
6 P- b3 S+ A& J2 q
, @# k# s; p/ b9 ^
list_head通常是嵌在数据结构内使用,在上文的实作中我们还是以整数链表为例,int_node的定义如下:, `# O7 E+ E7 G1 i! p( v
( Y5 P4 X2 c# |2 b- struct int_node {
- int val;
- struct list_head list;
- };& q0 r! x j" r4 P* [1 G. C# A
' @. k$ r& n6 _( e6 Y O7 ?$ R4 x" [! w9 ~2 U. H3 u$ h
使用list_head组织的链表的结构如下图所示:
6 p, P$ L' y- ~1 s) y- S3 n T
/ ^- P- [# L+ R' U; d+ c& y8 F, T
[: x% K( {* v( b9 v" L7 I- m% m* x$ y2 f; z
遍历链表是用宏list_for_each来完成。, a' m+ ^) Y. J% P$ m3 |' T! \
3 k: U1 ~% {: }( w" y ~1 Z( D
- #define list_for_each(pos, head) \
- for (pos = (head)->next; prefetch(pos->next), pos != (head); \
- pos = pos->next)# u3 K) h* A; F/ x0 @: p5 d* O
0 z. D+ P* P0 u% q+ [
" p% U; [. Q7 X& a7 N在这里,pos和head均是struct list_head。在遍历的过程中如果需要访问节点,可以用list_entry来取得这个节点的基址。+ n {6 ?2 y8 w/ [. y! d8 v
) [0 B& \8 C$ W* V1 b% e' O- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)# P3 d( f: ]5 E2 @
$ [0 _* T$ \" x4 ~- D2 |, u7 ?
; S/ S; K5 T+ M
我们来看看container_of是如何实现的。如下图所示,我们已经知道TYPE结构中MEMBER的地址,如果要得到这个结构体的地址,只需要知道MEMBER在结构体中的偏移量就可以了。如何得到这个偏移量地址呢?这里用到C语言的一个小技巧,我们不妨把结构体投影到地址为0的地方,那么成员的绝对地址就是偏移量。得到偏移量之后,再根据ptr指针指向的地址,就可以很容易的计算出结构体的地址。
/ r/ Z! U V7 s/ ^. n9 W( h( n! J/ f3 J* s
, @: P! P, F7 t ?
7 I" s8 c& M& T6 clist_entry就是通过上面的方法从ptr指针得到我们需要的type结构体。' L+ c# p" n1 }) z8 p
0 K, o F4 L8 P8 d
Linux内核代码博大精深,陈莉君老师曾把它形容为“覆压三百余里,隔离天日”(摘自《阿房宫赋》),可见其内容之丰富、结构之庞杂。内核里有着众多重要的数据结构,具有相关性的数据结构之间很多都是用本文介绍的链表组织在一起,看来list_head结构虽小,作用可真不小。( y' I; {) Q9 H8 W
* |" i1 o, l/ T7 a* a, _! n* _. _8 SLinux内核是个伟大的工程,其源代码里还有很多精妙之处,值得C/C++程序员认真去阅读,即使我们不去做内核相关的工作,阅读精彩的代码对程序员自我修养的提高也是大有裨益的。
$ E" P+ g# r/ m/ I2 y7 w+ U% U3 v8 E
& u* @0 ^, V3 q& d$ i) ? |
|