EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
首先我想说的是,CPU和GPU都是令人惊叹的计算机架构,它们是为了不同的工作负载与应用场景而设计的。
! g6 r+ z% B) j( r+ M2 O
CPU是一种非常通用的架构,它的工作方式基于一系列的计算机指令,也称为“指令集”。简单来说,CPU从内存中提取一小部分数据,放在寄存器或者缓存中,然后使用一系列指令对这些数据进行操作。操作完毕后,将数据写回内存,提取另一小部分数据,再用指令进行操作,并周而复始。我把这种计算方式称为“时域计算”。 2 p" W0 }7 D" _ `1 M5 m2 p/ G
不过,如果这些需要用指令进行处理的数据集太大,或者这些数据值太大,那么CPU就不能很高效的应对这种情况。这就是为什么在处理高速网络流量的时候,我们往往需要使用定制芯片,比如网卡芯片等,而不是CPU。这是因为在CPU中,即使处理一个字节的数据也必须使用一堆指令才能完成,而当数据流以每秒125亿字节进入系统时,这种处理方式哪怕使用再多的线程也忙不过来。
+ \6 r6 S) h$ X/ q
对于GPU来说,它所擅长的是被称作“单指令多数据流(SIMD)”的并行处理。这种处理方式的本质是,在GPU中有着一堆相同的计算核心,可以处理类似但并不是完全相同的数据集。因此,可以使用一条指令,就让这些计算核心执行相同的操作,并且平行的处理所有数据。 . ?4 L" l+ j `
然后对于FPGA而言,它实际上是CPU计算模型的转置。与其将数据锁定在架构上,然后使用指令流对其处理,FPGA将“指令”锁定在架构上,然后在上面运行数据流。
& O) `1 }0 S. I5 h8 E5 C. C" a; a& S
我把这种计算方式称为“结构计算”,也有人称之为“空间计算”,与CPU的“时域计算”模型相对应。其实叫什么名称都无所谓,但它的核心思想是,将某种计算架构用硬件电路实现出来,然后持续的将数据流输入系统,并完成计算。在云计算中,这种架构对于高速传输的网络数据非常有效,并且对于CPU来说也是一个很好的补充。
z. q& J7 n) b6 S& [- I6 \. Z- R |