TA的每日心情 | 衰 2019-11-19 15:32 |
---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
一、源代码
2 d; B% N4 u0 } m( N; t * C& z1 Y* W2 ~6 z
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %
- % Multi-Objective Golden Eagle Optimizer (MOGEO) source codes version 1.0
- %
- % Original paper: Abdolkarim Mohammadi-Balani, Mahmoud Dehghan Nayeri,
- % Adel Azar, Mohammadreza Taghizadeh-Yazdi,
- % Golden Eagle Optimizer: A nature-inspired
- % metaheuristic algorithm, Computers & Industrial Engineering.
- % To use this code in your own project
- % remove the line for 'GetFunctionDetails' function
- % and define the following parameters:
- % fun : function handle to the .m file containing the objective function
- % the .m file you define should accept 'x' as input and return
- % a column vector containing objective function values
- % nobj : number of objectives
- % nvars : number of decision/design variables
- % lb : lower bound of decision variables (must be of size 1 x nvars)
- % ub : upper bound of decision variables (must be of size 1 x nvars)
- %
- % MOGEO will return the following:
- % x : best solution found
- % fval : objective function value of the found solution
- %% Inputs
- FunctionNumber = 7; % 1-10
- options.PopulationSize = 200;
- options.ArchiveSize = 100;
- options.MaxIterations = 1000;
- options.FunctionNumber = FunctionNumber;
- %% Run Multi-Objective Golden Eagle Optimizer
- [fun,nobj,nvars,lb,ub] = GetFunctionDetails (FunctionNumber);
- options.AttackPropensity = [0.5 , 2];
- options.CruisePropensity = [1 , 0.5];
- [x,fval] = MOGEO (fun,nobj,nvars,lb,ub, options);
- ~$ K& n1 n6 L3 q/ D. i8 @1 T ; K% R) T/ P' I' e9 S$ ^3 {
: H' Z1 |9 n/ m" p3 B& R
' q: y) Z4 C, m9 c% V# c二、运行结果
3 N9 d3 V* x* d+ D9 Y0 S( h: W. b% U2 F! U+ h: ]6 ^3 L
|
|