TA的每日心情 | 开心 2020-9-8 15:12 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
硅片级可靠性(WLR)测试最早是为了实现内建(BIR)可靠性而提出的一种测试手段。硅片级可靠性测试的最本质的特征就是它的快速,因此,近年来它被越来越多得用于工艺开发阶段。工艺工程师在调节了工艺后,可以马上利用WLR测试的反馈结果,实时地了解工艺调节后对可靠性的影响。这样就把可靠性测试糅合和工艺开发的整个过程当中。如今,工艺更新换代非常快,所以,WLR就成为了一种非常有效的快速方法使工艺开发的进程大大加快。同时,各个公司在工艺开发后都会发行一个针对WLR的技术报告,这也为业界广泛接受。JEDEC也为此专门制定了一个标准,而且不定时的更新其内容。
3 N2 i, d- s5 D6 l c
; z. \" X8 T- x# ]4 L* L9 }
- V5 ?/ u. Q( J; M: p WLR要测试的项目主要有以下几大类:①互连线可靠性(电迁移);②氧化膜可靠性;③热载流子及NBTI;④等离子损伤(天线效应)等。用于工艺开发的WLR流程主要如下。: n' J( d0 @. B: B& j
3 E$ ^) q% h4 ^: b6 i 首先,制定一个WLR计划,包括对测试样品的要求(样品数、测试面积、Lot数等),一些设计规则和所有达到的规范。比如说电迁移中,要给出最大设计电流,器件使用温度等,评价氧化膜的可靠性时,如果是用斜坡电压法则要求测试面积大于10cm2,缺陷密度不能大于一定的值(D0);如果是用恒定电压法,则要给出加在栅极上的电压分别有多大等等。在评价热载流子效应时,一般要求热载流子中直流寿命大于0.2年等。下面详细介绍一下各个项目。+ O2 ?4 P( N9 L) n
. K- T% G8 J9 Q7 d4 A- N- A9 I 互连线可靠性(电迁移)
{, S! V: L/ q1 Z* c C ?( [" P5 V A8 A
电迁移(EM)是微电子器件中主要的失效机理之一,电迁移造成金属化的开路和短路,使器件漏电流增加。在器件向亚微米、深亚微米发展后,金属化的宽度不断减小,电流密度不断增加,更易于因电迁移而失效。因此,随着工艺的进步,EM的评价备受重视。
7 m( [8 O5 E# V, H0 E" t1 _7 y$ u8 ^0 m3 o: P
导致电迁移的直接原因是金属原子的移动。当互连引线中通过大电流时,静电场力驱动电子由阴极向阳极运动,高速运动的电子与金属原子发生能量交换,原子受到猛烈的电子冲击力,这就是所谓的电子风力。但是,事实上金属原子同时还受到反方向的静电场力。当互连线中的电流密度较高时,向阳极运动的大量电子碰撞原子,使得金属原子受到的电子风力大于静电场力。因此,金属原子受到电子风力的驱动,使其从阴极向阳极定向扩散,从而发生电迁移。
0 _* c; R0 ?9 f: i9 C( Y5 x- ]6 H# Q- l% {8 c6 q. o+ n
传统的评价电迁移的方法是封装法。对样品进行封装后,置于高温炉中,并在样品中通过一定电流,监控样品电阻的变化。当样品的电阻变化到一定比例后,就认为其发生电迁移而失效,这期间经过的时间就为在该加速条件下的电迁移寿命。但是封装法的缺点是显而易见的,首先封装就要花费很长的时间,同时,用这种方法时通过金属线的电流非常小,测试非常花费时间,一般要好几周。因为在用封装法时,炉子的温度被默认为就是金属线温度,如果有很大的电流通过金属线会使其产生很大的焦耳热,使金属线自身的温度高于炉子的温度,而不能确定金属线温度。
" ^+ X. ^( d7 a3 w& h2 W0 ]- t2 b0 \. A
所以,后来发展了自加热法(ISO-thermal)。该方法不用封装,可以真正在硅片级测试。它是利用了金属线自身的焦耳热使其升高。然后用电阻温度系数(temperature coefficient of resistance,TCR)确定金属线的温度。在实际操作中,可以调节通过金属线的电流来调节它的温度。实际应用表明,这种方法对于金属线的电迁移评价非常有效,但是对于通孔的电迁移评价,该方法就不适用了。因为,过大的电流会导致通孔和金属线界面出的温度特别高,从而还将无法确定整个通孔电迁移测试结构的温度。针对这种情况,又有研究者提出了一种新的测试结构——多晶硅加热法。这种方法是利用多晶硅作为电阻,通过一定电流后产生热量,利用该热量对电迁移测试结构进行加热。此时,多晶硅就相当于一个炉子。该方法需要注意的是在版图设计上的要求比较高,比如多晶硅的宽度,多晶硅上通孔的数目等都是会影响其加热性能的。
% h1 P( `5 G8 {3 O$ w( D# b( v6 \2 e- g2 B9 B( B6 v
以上三种方法得到的都是加速测试条件下的电迁移寿命,我们需要的是在使用条件和设计规则电流下的电迁移寿命,利用Black方程来推得我们想要的电迁移寿命。 氧化膜可靠性
+ M" D+ ^2 _( u7 t! u6 m0 r) R: E, Z* C+ j7 B. d6 m
集成电路以高速化和高性能化为目标,实现着进一步的微细结构。随着微细结构在工业上的实现, 降低成本和提高集成度成为可能。另一方面,随着MOS 集成电路的微细化,栅氧化层向薄栅方向发展,而电源电压却不宜降低,栅氧化层工作在较高的电场强度下,从而使栅氧化层的抗电性能成为一个突出的问题。栅极氧化膜抗电性能不好将引起MOS器件电参数不稳定,进一步可引起栅氧的击穿。栅氧击穿作为MOS 电路的主要失效模式已成为目前国际上关注的热点。0 q, D" d% c: H+ o% u, U1 T. G
9 Z& N+ Q! a" a& H! I4 j& n1 k
评价氧化膜可靠性的结构一般都是MOS电容,评价氧化膜不同位置的特性,需要设计不同的结构,主要有三种结构:大面积MOS电容,多晶硅梳状电容,有源区梳状电容等。评价氧化膜的方法主要有斜坡电压法,恒定电压法以及恒定电流法(用的相对较少)。/ \! [! h3 _7 e5 G
) a t3 U7 K5 J9 X/ N/ _2 e* ?
斜坡电压法
" X: t- _& ]8 B/ k; c* u6 v- X2 k
# e0 }& w/ v, Z4 b 测试时使MOS电容处于积累状态,在栅极上的电压从使用电压开始扫描一直到氧化膜击穿为止,击穿点的电压即为击穿电压(Vbd),同时我们还可以得到击穿电量(Qbd)。按照JEDEC标准,用斜坡电压法时,总的测试结构的氧化膜面积要达到一定的要求(比如大于10cm2等)。做完所有样品的测试后,对得到的击穿电压进行分类:7 W$ x/ I) `0 N6 Y) C
% S; M, h& `" b; Q+ F; x
● 击穿电压《使用电压:早期失效;' _0 V" M" i) Y6 H# c
% B- V. I9 I) Y; b; d m
● 使用电压《击穿电压0 p1 r' ] @, G* L8 ~ q. F" D1 z
7 P* f6 j! I0 ^ M) N ● 击穿电压》m&TImes;使用电压:本征失效9 Z; Y. ]8 Y7 d' `
* b; k7 z( u: @4 m1 V5 R 然后计算缺陷密度D:7 y" w4 B; r4 V. ~0 {
( @ G+ E- c4 ^# s" G
D=(早期失效数+可靠性失效数)/总的测试面积;* }: M) _ v( D7 ]. R. {1 O9 U
: g: V( F# m F" A9 b& c
如果D《 D0,则通过;
3 F0 A, T& v8 W, o& ^
, Y0 z3 l4 J7 |( U. b. P0 U 如果D》D0,则没有通过。
5 ?. N7 m% L( r/ m/ X& b7 \( ^
9 v5 H. d$ A# Y; g: ]1 B 此外,得到的击穿电量也可以作为判定失效类型的标准,一般当Qbd《0.1C/cm2 就认为是一个失效点,但是当工艺在0.18μm以上,Qbd一般只是作为一个参考,并不作为判定标准,因为Qbd和很多测试因素有关。
7 s$ W$ H: F2 w: T; X+ j
! M4 M# V; t9 ]* I. W7 k5 C |
|