|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
高斯混合模型里面的参数可以用到混核主元分析里面吗?有混合概率主元分析的EM算法的程序吗
) n$ h3 N' ~3 efunction ppca_mixture # t! {' P" z3 c4 k0 ^) n% [1 B
filename = 'virus3.dat';
) C+ ^/ G" [- W2 i6 J" j T = importdata(filename);
$ b/ n h" z- D% h [N, d] = size(T);6 @! |- @" u% K+ I! A' a( p
M = 3; % number of ppca analysers considered 考虑的ppca分析仪数量
3 G: g& M- x2 o+ Z1 X# c- p' [) [' [' y q = 2; % dimension of ppcas ppca的维数6 U% F; ?# ^# u+ c4 G8 d* B
% init
( o @$ [! Y8 \2 P7 y4 t0 u! f % initializing the posteriors (p(i|t_n), indexed by (n, i). R in text)
( U o# y9 C+ n; r* p %初始化后验(p(i|t_n),在文本中由(n, i). R索引 ' C+ K {, ?5 X: D# }0 y" p* ?8 c
classes = [3, 3, 3, 3, 2, 2, 3, 1, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2];' {( {9 A+ Z- D6 J$ O. ^
for n=1:N' B3 M; |9 @3 a! ^- z q( N
for i=1:M
" l' q2 w `$ _( T6 A if(i==classes(n))- i& }5 u! y9 p
posteriors(n, i) = 1;
, ` t/ r( M; F; C0 H8 i: w! V else
5 r q" X& e' t$ F$ G2 S9 e; j posteriors(n, i) = 0;
' h' @' ]/ K" e$ V# R, n1 X end$ @6 i* ]: Q: J
end
# x/ |* y0 s8 c- C end
2 I6 i. o. }2 Y# S3 W+ D % precision for convergence checking 收敛检验精度
" C) B, B2 J, B+ l& f# o1 n epsilon = 0.01;
6 y+ o& O& Q8 f3 M4 m entered = false;7 A N9 i, }: X4 d5 p
+ T+ `$ f# ^5 W* Y0 X
% loop
. T. R& y% Q2 s6 g* Y3 s9 H' O$ H3 P8 S while(true)! o, V$ ^: H, u0 k. g' E2 A
% updating priors (p(i), pi in text) and mean vectors (mu in text)
( v- s$ f3 v4 M7 L % 更新先验(p(i),文本中的pi)和平均向量(文本中的mu)- S: ^7 G B/ U3 i! f8 X
new_priors = 1/N * sum(posteriors);
) p5 \4 j) p8 |+ u A new_mus = zeros(M, d);
/ {0 ~$ x3 y9 {" r for i=1:M
! V% Q) v" G" C4 s/ f& ` k for n=1:N
! d: q; u( P! u$ F new_mus(i, = new_mus(i, + posteriors(n, i) * T(n, ;$ ?0 O D2 R0 s
end
' E2 T5 |' v: ~+ N& N4 O) m new_mus(i, :) = new_mus(i, :) / sum(posteriors(:, i));8 B3 Q- b& q) ?1 |, x. K
end l3 e# Q1 [5 i6 N
1 u9 H1 @) m3 L/ W6 @
% computing covariance matrices (S in text)计算协方差矩阵(文本中的S)
* l1 ~' @8 f5 N. g r1 s covariances = cell(M);
# Y" s( f1 H4 j- f9 J for i=1:M
- y# }% ^/ o/ a( I covariances{i} = zeros(d, d);/ F/ a$ Y8 ~7 C) e/ F
for n=1:N4 O/ s; j6 N9 y+ s
covariances{i} = covariances{i} + posteriors(n, i)*(T(n, :)' - new_mus(i, :)')*(T(n, :)' - new_mus(i, :)')';
* ~9 i$ s' J$ U) @$ D Z2 S end3 m% A6 Z. ^) ]$ m# V b" q
covariances{i} = covariances{i} / (new_priors(i) * N);( E! s* n8 Y8 s: P; z" f
end5 Q9 @+ k; P3 n/ O, w; u, P, F$ _
2 ]0 P k! \/ s' k$ m# l2 }0 M6 L! h
% applying ppca using covariance matrices 使用协方差矩阵应用ppca# k9 {8 `+ _6 W" @
% (Ws are weight matrices; sigmas are variances) (Ws为权重矩阵;(差异)
5 _8 H0 m r M& v% A [! B new_Ws = cell(M);
( q& C0 f% d( ~. q" s# w for i=1:M
; |3 X0 D0 r( ~; P1 H8 j6 e& t [new_Ws{i}, new_sigmas{i}] = ppca_from_covariance(covariances{i}, q);
0 l a$ ~ W, B, t% t" D3 E end
8 q& D( L! r- @; V* M% `3 u+ `, M, A8 \, M+ C
% convergence check 收敛性检查
9 z2 T, w& ]7 I) |0 T' c if(entered && max(abs(new_priors - priors)) < epsilon && max(max(abs(new_mus - mus))) < epsilon && max(max(max(abs(cell2mat(new_Ws) - cell2mat(Ws))))) < epsilon && max(abs(new_sigmas - sigmas)) < epsilon): I8 v7 V% _/ v& c& V' @
break;
( c0 ?4 X" r5 x9 p5 P# w end% W2 u" _. |% |
; M' I5 Z! B4 w- P/ |$ m) m) a
% replacing old parameter values 替换旧的参数值1 n& T& }9 w' R9 ?9 U% O
priors = new_priors;( y% L1 a8 r: @8 @. t% z# I
mus = new_mus; w0 { i# V* @3 R
Ws = new_Ws;" U* G1 B, b r; v$ R6 P
sigmas = new_sigmas;& i0 i9 u/ [& ?) m
* i u! O2 V' X2 T6 m2 k9 J8 b % computing the likelihoods (p(t_n|i)) 计算概率(p(t_n|i))
5 r( Q. p7 |& {4 j$ x for i=1:M/ z; A+ y7 l0 u" J& Z9 p
C = sigmas{i}^2 * eye(d) + Ws{i}*Ws{i}';
$ i2 o2 ?4 V1 ]( ^5 ?/ V) ? detC = det(C);
% H5 W$ `0 z. `1 b$ c invC = inv(C);
3 }8 b" i) E/ A3 D for n=1:N
2 ^9 @! t4 @9 ]( t likelihoods(n, i) = (2*pi)^(-d/2)*detC^(-1/2)*exp(-1/2*(T(n, :)' - mus(i, :)')'*invC*(T(n, :)' - mus(i, :)'));
# H" K' T8 ]4 v# p, S7 }8 V) Q end9 j ] Z% f4 D c9 H
end4 X. W$ \9 J9 F1 [
% computing the joint probabilities (p(t_n, i)) 计算联合概率(p(t_n, i))
5 x! h# e" G( X1 m for i=1:M- P# [1 @6 D" P2 j7 S; n( B
joint(:, i) = likelihoods(:, i) * priors(i);
4 U, @( t! [6 F1 A C- v end
! }6 c- t6 O% n; l0 t3 } % computing the data priors (p(t_n)) 计算数据先验(p(t_n))+ r2 W$ l" O+ v- _5 X; V
data_priors = sum(joint');2 S7 U* [! C5 j& Z9 [
% computing and displaying the likelihood of the data set 计算和显示数据集的可能性
2 Y& Z$ o. b4 {9 ] disp(sum(log(data_priors)));
1 S% E7 P/ t$ g6 p& V ]: Q % computing the posteriors (p(i|t_n), indexed by (n, i). R in text)
9 g8 Y( w& T( b % 计算后验(p(i|t_n),用(n, i)索引。R在文本中)
2 z0 ]3 b' Q/ T- } for n=1:N
- x% H# Q$ l! T9 k8 I7 ^5 H6 t posteriors(n, :) = joint(n, :) / data_priors(n);
9 ` q. ]' G, |' _ end8 R: f' t# _/ |. }8 b
- N, |- C% B$ X) F8 x5 r % we went through the loop at least once 我们至少做了一次循环
( A' l0 T5 q' c: }2 a/ t* \% S1 ` entered = true;* S7 z+ ?; b! o2 Y# U
end5 V5 b# o' c9 n# H& G( G
2 V& n7 m2 j/ @' Z! W* I% B- r' f" Y3 N M9 ?, r1 H4 V
% computing the latent variables 计算潜变量
: ^: Y* j5 \3 C5 G! b latent = cell(M);
( E( k3 p, m" I: Z% x5 d for i=1:M- w' t$ D6 o1 i! }
latent{i} = ppca_latent(T, Ws{i}, sigmas(i));
' s0 {2 `/ f& y( k/ ~ end
f: l1 r0 i2 |4 |6 o% d, F % selecting likely points for each ppca analyser 为每个ppca分析器选择可能的点: `; X+ J! X# R* o. I6 O, {
for n=1:N* q/ y% j' Q0 I1 @. c4 o
[~, i] = sort(posteriors(n, :), 'descend');! f6 p9 ^2 P) [( @/ g3 c
points_to_classes(n) = i(1);4 E, A7 L% m% T
end% a6 Z# I! i2 j/ N+ Y# _
classes_to_points = cell(M);
' t* `% t' j7 W$ m) o/ i classes_to_point_numbers = cell(M);3 A% d8 [& p. M% z) b
for n=1:N
' b( V7 {' Z6 f* d6 e6 L8 q/ L- ]4 w classes_to_points{points_to_classes(n)}(:, end+1) = latent{points_to_classes(n)}(:, n);0 b/ A5 _' z& U; Y' c" G) I# N
classes_to_point_numbers{points_to_classes(n)}(end+1) = n;1 s. g- M3 t. {" \* O
end
0 h. B& s Z8 O n H& G* s4 w: Z% g( ~7 ^5 w+ O
% display the results of the automatic classification 显示自动分类结果
9 V& x' [0 N; x for i=1:M
& v5 T! d0 s' V: A disp(classes_to_point_numbers{i});- X# F& e) i+ e U0 a! |
end
( U; \& P7 _$ ?5 V' _
$ s3 T; y! y" i1 k' I% X ppca_plot2d(classes_to_points{1});% ], e* p$ Z" l# L& w2 J2 b# S4 _
end, c, N1 S& e: l- ]
|
|