|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
高斯混合模型里面的参数可以用到混核主元分析里面吗?有混合概率主元分析的EM算法的程序吗+ U. m! @$ u5 ~' x) d) e6 E/ n
function ppca_mixture 9 I$ W* V! N5 I
filename = 'virus3.dat';
3 H! t, d: L$ I' W0 s, P T = importdata(filename);, F5 B5 U( C3 D( M+ U8 e
[N, d] = size(T);
6 ?" b3 J# {) k- K9 R* N" a* n& m( A* ] M = 3; % number of ppca analysers considered 考虑的ppca分析仪数量. ?) S/ w1 K1 e6 t
q = 2; % dimension of ppcas ppca的维数1 k7 U) e" K6 N) b" M
% init
5 S( E" O$ Q6 Q; r# n- S- H % initializing the posteriors (p(i|t_n), indexed by (n, i). R in text)
- q4 ? ?4 N0 Z4 p %初始化后验(p(i|t_n),在文本中由(n, i). R索引
! F7 B/ ?5 A# ~3 A classes = [3, 3, 3, 3, 2, 2, 3, 1, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2];
2 o' S- J9 _% y! R for n=1:N
' J4 l! D! C: E4 Z+ x; ]4 V2 N* R for i=1:M4 D7 L- q9 v+ b f
if(i==classes(n))
G2 |6 n. i# T/ U: w& B: ] posteriors(n, i) = 1;
d8 @% Z9 [7 R0 H" T else L ?/ {! }3 {+ x& D% c9 [
posteriors(n, i) = 0;
9 C* t- p2 T& M end1 g& |/ v, c, K2 z7 E7 I
end- f1 u* y% J1 m6 |; F& _
end( g+ `) O6 v/ I1 f) ?! i
% precision for convergence checking 收敛检验精度+ s" e' E$ J: e$ y$ w) k9 i) H
epsilon = 0.01;
( o+ K7 n: q. |7 a7 r* O+ h entered = false;
) r0 z3 J7 f7 }# F+ ]2 H2 s
; C" h( } o2 f/ h, n, s- _ % loop
7 t0 e( m, _5 T while(true)) c# `, _: x, J' Y x
% updating priors (p(i), pi in text) and mean vectors (mu in text)
& K1 u) D- q" ]' \9 d7 h % 更新先验(p(i),文本中的pi)和平均向量(文本中的mu)
( I3 [0 I! |( B2 j X$ ]3 k% l new_priors = 1/N * sum(posteriors);
- d2 ?9 l7 h' V' L% f4 Q new_mus = zeros(M, d);& H# J: m/ K: i" `0 s" g* ^. y
for i=1:M# N+ o- H9 @7 r
for n=1:N! c/ l# a& z- P( x
new_mus(i, = new_mus(i, + posteriors(n, i) * T(n, ;& X- i) n8 |: ~" N# h( C' n
end
* w% E4 p' x% r new_mus(i, :) = new_mus(i, :) / sum(posteriors(:, i));6 V9 p, W0 q' f! s9 E0 l
end8 ~1 |$ _+ l* b+ E/ W1 _, m
2 x) H. C6 Q% ?4 Y; c% @ % computing covariance matrices (S in text)计算协方差矩阵(文本中的S)
, L E6 O! B$ [# V |6 c; m1 A1 A5 T covariances = cell(M);
% e5 X( ^& F4 p2 g, ? for i=1:M
- v( {% J8 i, G2 j covariances{i} = zeros(d, d);
$ x, {- v7 I, q) G8 P. l$ a for n=1:N
" L" j5 {0 I: W& ~ covariances{i} = covariances{i} + posteriors(n, i)*(T(n, :)' - new_mus(i, :)')*(T(n, :)' - new_mus(i, :)')';: T$ ^* o9 U2 U8 m; \0 j/ b% z
end
- N+ T8 _) ^0 y# d' H) P b6 | covariances{i} = covariances{i} / (new_priors(i) * N);
! J% d9 p* [2 |% r/ l end
]4 u% p5 X1 A4 h9 F
! ~+ _5 `. h5 Y. \. I: o. U' {5 c$ s" Z( {: U7 _ @5 }5 F
% applying ppca using covariance matrices 使用协方差矩阵应用ppca
# d0 m) f6 v6 _" T. U0 c' a % (Ws are weight matrices; sigmas are variances) (Ws为权重矩阵;(差异)
% _' j8 Z. c2 J! l5 b' { new_Ws = cell(M);
* y! [; c% X1 B: I9 m for i=1:M
8 \& g% k7 Z: s' B) `* Z$ q [new_Ws{i}, new_sigmas{i}] = ppca_from_covariance(covariances{i}, q);
" [1 w! C- ~ |! v$ Y' b end
5 y! A! ]* J, M. U4 c
& e# A- Z* \3 [% O& d% [ % convergence check 收敛性检查5 z( L6 U7 E1 h0 W/ E0 A
if(entered && max(abs(new_priors - priors)) < epsilon && max(max(abs(new_mus - mus))) < epsilon && max(max(max(abs(cell2mat(new_Ws) - cell2mat(Ws))))) < epsilon && max(abs(new_sigmas - sigmas)) < epsilon)9 ^! U, _$ ]8 W1 f0 a
break;
+ \. e1 v6 y) c9 r- T* @ end
/ U/ T7 A" G9 ], r* l- O) J6 C
0 {. }- n. o5 c) W % replacing old parameter values 替换旧的参数值
: i" l8 ]! n0 s' R priors = new_priors;. j: L/ ]* [( W% T1 w+ |# r% i
mus = new_mus;
3 y8 q# u4 ?0 S: v- F Ws = new_Ws;
6 J4 y7 T# {. |. y, Q, }0 n sigmas = new_sigmas;
; N- c6 U" N; p7 W3 k- q- ?7 A M# p
% computing the likelihoods (p(t_n|i)) 计算概率(p(t_n|i))
9 a |. g& \- g" q2 n for i=1:M& G" u# Z* b8 X& n7 V8 O. C$ `
C = sigmas{i}^2 * eye(d) + Ws{i}*Ws{i}';% ~9 E M! P$ ?) m8 X, l
detC = det(C);( y$ m; q* V' c+ r8 I, i7 P
invC = inv(C);
0 W4 N/ _% d% H. b+ F9 V& J for n=1:N
7 h& |' L! P: d9 s v( x8 I likelihoods(n, i) = (2*pi)^(-d/2)*detC^(-1/2)*exp(-1/2*(T(n, :)' - mus(i, :)')'*invC*(T(n, :)' - mus(i, :)'));
- Z8 S% v7 m3 b1 B! I6 d" Q6 T end
; W. W$ w6 L: Q& T: _ end
9 i |- w, c3 T' y6 Z; \& f % computing the joint probabilities (p(t_n, i)) 计算联合概率(p(t_n, i)): Y5 p' }( R! R2 {
for i=1:M# s- N0 e: ^, t5 R+ q# T8 @8 N Q! ?
joint(:, i) = likelihoods(:, i) * priors(i);9 U5 O6 b' n4 S' H6 | _2 R3 [
end7 k+ {0 i ~' A9 i% q* l2 k! W
% computing the data priors (p(t_n)) 计算数据先验(p(t_n))
( T6 u: R+ ^, U7 u! \, ~+ B data_priors = sum(joint');
+ K' O* ?' f2 z9 @1 o/ b( c2 \ % computing and displaying the likelihood of the data set 计算和显示数据集的可能性
2 y6 m( u1 [) r$ }& K disp(sum(log(data_priors)));
! C9 W% P% o% E % computing the posteriors (p(i|t_n), indexed by (n, i). R in text)* ^3 N' `0 H: h
% 计算后验(p(i|t_n),用(n, i)索引。R在文本中)0 S* t# Y& |. h, s
for n=1:N
4 g7 ^) c+ ?2 A3 ~ posteriors(n, :) = joint(n, :) / data_priors(n);1 _ w% L5 ~5 u# m
end
4 s7 l/ M$ n9 X; _, G
4 t5 t4 H; i# A4 k; m# t % we went through the loop at least once 我们至少做了一次循环
; _* j1 i8 `: e- b. e' u! i entered = true;6 W/ @7 v! @) g, D: J- {# d
end R8 U$ s+ n) ?6 A: k
d; D2 A! a6 w& \" Z$ q5 q
3 u, G- x" K/ S
% computing the latent variables 计算潜变量# D$ \$ }/ Q: q% H+ ^$ E- \# n
latent = cell(M);" d9 M5 r. d* Y1 p- T+ {
for i=1:M
" b/ r4 R; y; H latent{i} = ppca_latent(T, Ws{i}, sigmas(i));/ g5 E1 c& [$ e0 q) `
end7 }8 F# `( e) v* d5 o, O. a p
% selecting likely points for each ppca analyser 为每个ppca分析器选择可能的点, y# v# B7 z1 {" K! w. D% t6 D
for n=1:N
' L4 u' P. {/ u [~, i] = sort(posteriors(n, :), 'descend');6 `* b6 h9 w" R% ]: x
points_to_classes(n) = i(1);
/ s& B3 G, p7 @9 U0 @0 N' ? end( C1 X' X6 a9 V2 M' Q
classes_to_points = cell(M);0 l% ]" g+ O* j2 K9 B
classes_to_point_numbers = cell(M);1 {" r- y3 m/ S$ ~5 i& N. r
for n=1:N) \) i0 D+ {" \5 g/ q2 S% k
classes_to_points{points_to_classes(n)}(:, end+1) = latent{points_to_classes(n)}(:, n);
6 d- V' M3 e b f" k classes_to_point_numbers{points_to_classes(n)}(end+1) = n;( P- ^) f4 _1 L/ s1 Z
end; U; k: D) W6 V4 b* F x
/ W9 V# o8 v, ]; l9 O1 q" @ % display the results of the automatic classification 显示自动分类结果: T5 X9 h" a- O: W6 s' ?* ?
for i=1:M. E* z) p4 d8 r7 f' H$ d+ _8 @) g0 t
disp(classes_to_point_numbers{i});
a9 t" \" V) |% ~7 F. W end1 ]' Q$ e* ^3 g- J) O4 Q9 U
* S3 |: z0 M2 B! o' m! \
ppca_plot2d(classes_to_points{1});. |! F1 n! E' i
end
0 t" {5 j& ~4 m' q |
|