|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
#技术风云榜#基于非支配排序的多目标PSO算法MATLAB实现
# u# o5 q4 o* {% A4 E% N+ j$ M! I L( G
这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。: E* q5 c8 s/ m% ^/ \/ \
& }2 N! t" L1 X% c2 Z9 U0 e9 n
伪代码& Q( c: }) U- j' R9 H b
5 @* ]# s6 E: R( p& K* t
0 S% i7 W/ y- q6 Z+ K6 w% ^
1 O2 g4 u6 D: o3 [0 f$ S9 Q( F/ W& e- b2 ]: _& D8 P C
具体流程& E6 R, |/ m" w" h* \2 x6 ?
- ①划分数据集为测试集和训练集
- ②初始化PSO算法
- ③迭代开始
- ④计算两个目标值(论文中是特征数和错误率)
- ⑤非支配排序
- ⑥拥挤距离度量并排序
- ⑥对每个粒子从第一前沿面选择一个粒子作为gbest,更新当前粒子
- ⑦调整粒子群
- ⑧迭代结束返回7 d# F& k( I ?8 H
; {3 M2 `( d1 \, `MATLAB实现:4 `4 V, {$ ~. @9 w0 X* Z
NSPSO:- `" X( s. ^3 ]2 L
7 D3 r) W8 a; M: b9 N2 z. c: U6 t注意其中FSKNN是我的问题的评价函数,包含两个目标值,都存入到pfitness中
7 Z T- u6 L4 J. M# Q; F' J2 h8 f1 k
( q5 z$ Q, Y. m$ v, f# v- function [solution,time,pop,pfitness,site,LeaderAVE] = NSPSO(train_F,train_L)
- tic
- global maxFES
- dim = size(train_F,2);
- FES = 1;
- sizep = 30;
- pop = rand(sizep,dim);
- popv = rand(sizep,dim);
- pfitness = zeros(sizep,2);
- LeaderAVE = zeros(1,2);
- while FES <maxFES
- Off_P = zeros(sizep,dim);
- Off_V = zeros(sizep,dim);
- ofitness = zeros(sizep,2);
- for i=1:sizep
- [pfitness(i,1),pfitness(i,2)] = FSKNN(pop(i,:),i,train_F,train_L);
- end
- Front = NDSort(pfitness(:,1:2),sizep);
- [~,rank] = sortrows([Front',-CrowdingDistance(pfitness,Front)']);
- LeaderSet = rank(1:10);
- solution = pfitness(LeaderSet,:);
- LeaderAVE(1) = mean(solution(:,1));
- LeaderAVE(2) = mean(solution(:,2));
- for i = 1:sizep
- good = LeaderSet(randperm(length(LeaderSet),1));
- r1 = rand(1,dim);
- r2 = rand(1,dim);
- Off_V(i,:) = r1.*popv(i,:) + r2.*(pop(good,:)-pop(i,:));
- Off_P(i,:) = pop(i,:) + Off_V(i,:);
- end
- for i=1:sizep
- [ofitness(i,1),ofitness(i,2)] = FSKNN(Off_P(i,:),i,train_F,train_L);
- end
- temppop = [pop;Off_P];
- tempv = [popv;Off_V];
- tempfiness = [pfitness;ofitness];
- [FrontNO,MaxFNO] = NDSort(tempfiness(:,1:2),sizep);
- Next = false(1,length(FrontNO));
- Next(FrontNO<MaxFNO) = true;
- PopObj = tempfiness;
- fmax = max(PopObj(FrontNO==1,:),[],1);
- fmin = min(PopObj(FrontNO==1,:),[],1);
- PopObj = (PopObj-repmat(fmin,size(PopObj,1),1))./repmat(fmax-fmin,size(PopObj,1),1);
- % Select the solutions in the last front
- Last = find(FrontNO==MaxFNO);
- del = Truncation(PopObj(Last,:),length(Last)-sizep+sum(Next));
- Next(Last(~del)) = true;
- % Population for next generation
- pop = temppop(Next,:);
- popv = tempv(Next,:);
- pfitness = tempfiness(Next,:);
- fprintf('GEN: %2d Error: %.4f F:%.2f\n',FES,LeaderAVE(1),LeaderAVE(2));
- FES = FES + 1;
- end
- [FrontNO,~] = NDSort(pfitness(:,1:2),sizep);
- site = find(FrontNO==1);
- solution = pfitness(site,:);
- LeaderAVE(1) = mean(solution(:,1));
- LeaderAVE(2) = mean(solution(:,2));
- toc
- time = toc;
- end
2 m. Z7 \( \% |" H& B 7 l) D( I8 H) s8 W
1 [' ?2 `, }2 [3 m/ ?% g( W拥挤距离代码:
4 z7 z, T% h/ e4 x7 e: L9 ^' A
) J, f6 a+ w0 B2 h i' B0 b- function CrowdDis = CrowdingDistance(PopObj,FrontNO)
- % Calculate the crowding distance of each solution front by front
- % Copyright 2015-2016 Ye Tian
- [N,M] = size(PopObj);
- CrowdDis = zeros(1,N);
- Fronts = setdiff(unique(FrontNO),inf);
- for f = 1 : length(Fronts)
- Front = find(FrontNO==Fronts(f));
- Fmax = max(PopObj(Front,:),[],1);
- Fmin = min(PopObj(Front,:),[],1);
- for i = 1 : M
- [~,Rank] = sortrows(PopObj(Front,i));
- CrowdDis(Front(Rank(1))) = inf;
- CrowdDis(Front(Rank(end))) = inf;
- for j = 2 : length(Front)-1
- CrowdDis(Front(Rank(j))) = CrowdDis(Front(Rank(j)))+(PopObj(Front(Rank(j+1)),i)-PopObj(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
- end
- end
- end
- end
' ]2 }& d- u O8 _6 K" w ' J4 d6 K4 `6 @! {
. I' t n I/ E- h
Truncation.m代码:
j2 m8 C3 Z4 k! c$ P4 d" C
+ G# T# {0 ]5 q- function Del = Truncation(PopObj,K)
- % Select part of the solutions by truncation
- N = size(PopObj,1);
- %% Truncation
- Distance = pdist2(PopObj,PopObj);
- Distance(logical(eye(length(Distance)))) = inf;
- Del = false(1,N);
- while sum(Del) < K
- Remain = find(~Del);
- Temp = sort(Distance(Remain,Remain),2);
- [~,Rank] = sortrows(Temp);
- Del(Remain(Rank(1))) = true;
- end
- end& |% u7 l% \( P9 U1 P2 k7 F# l
O- I2 S1 i: H: _( }& R. H' j& b) A, O; f* D% ~! C
3 I5 j, k& ?, |0 K) T1 |' u. G: W$ l& e% n
|
|