TA的每日心情 | 怒 2019-11-20 15:22 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
5 [: X/ _* _- O
(1)序列前向选择( SFS , Sequential Forward Selection )
u: S& N# V+ d0 ]8 T
! J1 j5 D I2 w3 @& ~算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。% @6 V& l' E8 ]; M& c5 o" T
X V2 m" ~) i- x% P q2 P u; g
2 S" ?5 R0 U& ~0 c7 s& J4 a& s' n
+ C* |" z* b' P Y- ~
; F9 P8 }- ^% V- a" {3 ]$ ?% l! X2 v
6 u3 g1 t- {( j& T1 q, ^
算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。8 j v( } e- y9 P! w4 ]
/ ]5 }3 m$ p2 k4 i T代码:
, ^. F/ C ^2 U# w& b' _3 l! p" _: ?. d
- %----4.17编 顺序前进法特征选择 成功!
9 C+ ]0 s1 z" F$ ?# d- clear;
- clc;
- %--------特征导入 请自行修改
- n- s3 v5 f( b, V! ]! ?2 }0 C. C- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
6 M# Z5 I: C. ~/ D5 Z9 J: }- % for i=1:96
! q% b6 X# p* c! k) ~ }3 F) [- o- % wfeature{30+i}=feature(:,i);
7 U+ Y4 P4 M2 i- % end
- & |6 f3 R( T4 g/ R7 Q0 }
- %%%%%%%----------归一化
7 y0 S! u, v' l' O- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
- 4 ]1 Y$ z7 P' B. @) y# d
- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
* o# D0 t4 c7 X- {- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
/ s0 e" `2 }1 b' ?) z) S3 e3 f- g=reshape(cc,M,N);
- figure,imshow(g);
9 U- e" Y# j' I
) n6 c7 z) H" X! w- [
, ]9 u; V+ X) x(2)序列后向选择( SBS , Sequential Backward Selection )7 Z' V9 F8 \- Q# B
; m/ i# J% U. P- D7 i9 c算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
" n0 C; U; t. F" }2 ^) \# a, f1 C& z/ `+ P
算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。! Z# n8 @6 e& }7 Z3 w Y6 o
0 @7 H$ U2 \6 J; f
8 w$ u% A* [& \- h0 s2 T
. J2 H2 b7 c/ h+ ^9 C0 G; r代码:# x n4 L' c, V/ t
- _& s, q; E; j2 g ^
- %----4.17编 顺序后退法特征选择
- * ?8 O* D" U4 x* _# s0 B( i
- clear;
- clc;
- %--------特征导入 请自行修改
" L+ D5 x# E; r6 |3 N& K4 |- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
; o2 ^/ {) E$ {! ]1 z- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- & Y3 ]8 w0 K9 P; [
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
- ) v6 [; z) F4 |% b, b* K0 c
- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- # `! Q* D" g. Q/ i
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
2 q! @" X1 R/ p$ t' a- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- + Q# B7 e3 Z4 T/ o( w7 f
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob
! m( J# T! ]" f* u2 R; a- C* X 9 o7 n) J: H- A% T
! n8 {5 r) x$ `$ y5 |9 h另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|