TA的每日心情 | 怒 2019-11-20 15:22 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
. X; J5 {) H+ C6 G(1)序列前向选择( SFS , Sequential Forward Selection )9 c- `! B8 ]1 @2 Y% i: ^6 X3 l+ U
, C. C9 N* A$ c. T' O
算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。6 p0 h' f2 J O0 X* a, `
, y+ n, K9 A V5 e" }2 D, D
8 ?# n4 A' a" W/ t6 S, o6 t2 G0 `
M9 f+ f: }+ O6 h( S. J) q9 y) a6 ?5 J
i& t+ N6 @8 \
1 z- a% [( P! [0 r c, s$ W算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。
' F2 H2 k- ^( P" t- K. c3 \6 P, a- z" q
代码:
; `5 ]" }9 R" K$ {' r/ {" }
2 v. }. k2 a) s" ]- %----4.17编 顺序前进法特征选择 成功!
- [; W0 y% R+ |3 k- ?: Y8 H- clear;
- clc;
- %--------特征导入 请自行修改
$ m) x+ T e0 `, E- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
& @& y/ _" W8 }- % for i=1:96
& P# o/ h8 M! ~# y0 I3 B. y! \( B- % wfeature{30+i}=feature(:,i);
5 H+ {1 Y! Q8 J$ x* |2 P) i- % end
* R4 Y7 P9 w. E- \4 P- %%%%%%%----------归一化
- / o, `7 o0 X+ p$ O, H. p8 l
- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
, v. r+ \3 [6 c( z" ~0 ~- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
6 ^* a7 v% Y) M* [- k/ H( |- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- 9 ?9 J2 z! a" S& Q0 o9 d
- g=reshape(cc,M,N);
- figure,imshow(g);+ |4 @. Z8 d) o K2 ?2 C0 Q7 P
5 ^. X# o ]2 }& g
$ e1 k' R! B8 w! W& U7 c0 s P2 R5 b(2)序列后向选择( SBS , Sequential Backward Selection )
0 |% y9 @1 V. n8 X* k5 A& S
- T1 l/ n: Z% O4 L8 A7 Z3 e5 O算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
7 u# \4 f0 X0 k
5 M" S4 h0 ]$ {算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。3 `' B7 ? [4 T7 n0 J& a
/ y6 v, l* l3 u ~; w
9 i. e+ X9 n$ Y% z
- {! G6 }6 j. W: p- w# h
代码:
& V; ?) [) w* H6 _9 N2 Z; y
3 W2 b. r L$ n& U# [( y- Y! K+ w- %----4.17编 顺序后退法特征选择
- 2 g; K3 B8 v# [+ [ L; L( `
- clear;
- clc;
- %--------特征导入 请自行修改
- ) E8 @8 w5 R8 M" D$ ]
- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
- : e* i6 q6 s+ N& G$ p+ }: g/ L( l# i
- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- & I, u" s; q+ g6 T: a2 J, ^
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
& m/ B4 b( D6 D+ W6 x P' G- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- * d# [& B0 O/ l- y0 ?
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
- . Y9 d D8 O/ z; O/ `1 @
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- 4 r7 B, c9 S) q( S0 w R
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob6 \. l6 S9 B3 F0 S( d
4 r( F$ G0 \ q4 U& W2 B* T
( m/ R& Y3 z6 X) ~, X+ x另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|