|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
为了能随时了解Matlab主要操作及思想。2 R6 R8 y( h' m( s# {8 W5 S/ r
3 d0 C" K, X' m8 F- x故本文贴上NSGA-Ⅱ算法Matlab实现(测试函数为ZDT1)。& ~# w9 G0 K4 x, z: w
: ~+ Z/ i! n7 f5 L J8 b感谢郭伟学长提供的代码。
7 j; V4 d2 {) G) c' S
& L) {: R7 a. a+ Q+ B代码所有权归郭伟学长。
, h9 c! Q$ ^" e' F; q. X! x5 S0 `+ O6 N
NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:
1 t: w9 G5 X1 R, X. A①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;
8 N; c9 s! D( }# k* ^②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;3 e% A: X K& j8 }0 q6 }+ D
③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
# l4 b# W5 s8 k( d- K7 n8 W+ q8 i# N. j8 `5 ~1 m' e
Matlab实现:5 O+ J* D1 M1 T! x5 u
$ L" R4 I$ \5 N- F- function NSGAII()
- clc;format compact;tic;hold on
- %---初始化/参数设定
- 3 |& {3 w% K" s. K j1 E4 V
- generations=100; %迭代次数
- popnum=100; %种群大小(须为偶数)
- poplength=30; %个体长度
- minvalue=repmat(zeros(1,poplength),popnum,1); %个体最小值
- maxvalue=repmat(ones(1,poplength),popnum,1); %个体最大值
- population=rand(popnum,poplength).*(maxvalue-minvalue)+minvalue; %产生新的初始种群
- %---开始迭代进化
- I; P) x4 K, P) @1 c, t
- for gene=1:generations %开始迭代
- %-------交叉
- 9 V& @" z, z3 [
- newpopulation=zeros(popnum,poplength); %子代种群
- for i=1:popnum/2 %交叉产生子代
- k=randperm(popnum); %从种群中随机选出两个父母,不采用二进制联赛方法
- beta=(-1).^round(rand(1,poplength)).*abs(randn(1,poplength))*1.481; %采用正态分布交叉产生两个子代
- newpopulation(i*2-1,:)=(population(k(1),:)+population(k(2),:))/2+beta.*(population(k(1),:)-population(k(2),:))./2; %产生第一个子代
- newpopulation(i*2,:)=(population(k(1),:)+population(k(2),:))/2-beta.*(population(k(1),:)-population(k(2),:))./2; %产生第二个子代
- end
- %-------变异
- - v9 O, R6 p6 X
- k=rand(size(newpopulation)); %随机选定要变异的基因位
- miu=rand(size(newpopulation)); %采用多项式变异
- temp=k<1/poplength & miu<0.5; %要变异的基因位
- newpopulation(temp)=newpopulation(temp)+(maxvalue(temp)-minvalue(temp)).*((2.*miu(temp)+(1-2.*miu(temp)).*(1-(newpopulation(temp)-minvalue(temp))./(maxvalue(temp)-minvalue(temp))).^21).^(1/21)-1); %变异情况一
- newpopulation(temp)=newpopulation(temp)+(maxvalue(temp)-minvalue(temp)).*(1-(2.*(1-miu(temp))+2.*(miu(temp)-0.5).*(1-(maxvalue(temp)-newpopulation(temp))./(maxvalue(temp)-minvalue(temp))).^21).^(1/21)); %变异情况二
- %-------越界处理/种群合并
- ( v7 f& X+ o0 X* |
- newpopulation(newpopulation>maxvalue)=maxvalue(newpopulation>maxvalue); %子代越上界处理
- newpopulation(newpopulation<minvalue)=minvalue(newpopulation<minvalue); %子代越下界处理
- newpopulation=[population;newpopulation]; %合并父子种群
- %-------计算目标函数值
- & | ^/ {: Y$ A1 N% d3 ?
- functionvalue=zeros(size(newpopulation,1),2); %合并后种群的各目标函数值,这里的问题是ZDT1
- functionvalue(:,1)=newpopulation(:,1); %计算第一维目标函数值
- g=1+9*sum(newpopulation(:,2:poplength),2)./(poplength-1);
- functionvalue(:,2)=g.*(1-(newpopulation(:,1)./g).^0.5); %计算第二维目标函数值
- %-------非支配排序
- 4 ~$ Z1 H& D$ C8 _7 y
- fnum=0; %当前分配的前沿面编号
- cz=false(1,size(functionvalue,1)); %记录个体是否已被分配编号
- frontvalue=zeros(size(cz)); %每个个体的前沿面编号
- [functionvalue_sorted,newsite]=sortrows(functionvalue); %对种群按第一维目标值大小进行排序
- while ~all(cz) %开始迭代判断每个个体的前沿面,采用改进的deductive sort
- fnum=fnum+1;
- d=cz;
- for i=1:size(functionvalue,1)
- if ~d(i)
- for j=i+1:size(functionvalue,1)
- if ~d(j)
- k=1;
- for m=2:size(functionvalue,2)
- if functionvalue_sorted(i,m)>functionvalue_sorted(j,m)
- k=0;
- break
- end
- end
- if k
- d(j)=true;
- end
- end
- end
- frontvalue(newsite(i))=fnum;
- cz(i)=true;
- end
- end
- end
- %-------计算拥挤距离/选出下一代个体
* d0 j; T; }- a4 X; M: i! |: h- fnum=0; %当前前沿面
- while numel(frontvalue,frontvalue<=fnum+1)<=popnum %判断前多少个面的个体能完全放入下一代种群
- fnum=fnum+1;
- end
- newnum=numel(frontvalue,frontvalue<=fnum); %前fnum个面的个体数
- population(1:newnum,:)=newpopulation(frontvalue<=fnum,:); %将前fnum个面的个体复制入下一代
- popu=find(frontvalue==fnum+1); %popu记录第fnum+1个面上的个体编号
- distancevalue=zeros(size(popu)); %popu各个体的拥挤距离
- fmax=max(functionvalue(popu,:),[],1); %popu每维上的最大值
- fmin=min(functionvalue(popu,:),[],1); %popu每维上的最小值
- for i=1:size(functionvalue,2) %分目标计算每个目标上popu各个体的拥挤距离
- [~,newsite]=sortrows(functionvalue(popu,i));
- distancevalue(newsite(1))=inf;
- distancevalue(newsite(end))=inf;
- for j=2:length(popu)-1
- distancevalue(newsite(j))=distancevalue(newsite(j))+(functionvalue(popu(newsite(j+1)),i)-functionvalue(popu(newsite(j-1)),i))/(fmax(i)-fmin(i));
- end
- end
- popu=-sortrows(-[distancevalue;popu]')'; %按拥挤距离降序排序第fnum+1个面上的个体
- population(newnum+1:popnum,:)=newpopulation(popu(2,1:popnum-newnum),:); %将第fnum+1个面上拥挤距离较大的前popnum-newnum个个体复制入下一代
- end
6 I: A* ?- P# p x4 ]# r- %---程序输出
- M$ @. r s7 {2 X) N/ t/ o& s
- fprintf('已完成,耗时%4s秒\n',num2str(toc)); %程序最终耗时
- output=sortrows(functionvalue(frontvalue==1,:)); %最终结果:种群中非支配解的函数值
- plot(output(:,1),output(:,2),'*b'); %作图
- axis([0,1,0,1]);xlabel('F_1');ylabel('F_2');title('ZDT1')
- end
: u7 l8 [4 x$ {& ^8 d# v |
|