|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。
+ C+ q! Q0 J+ v& }( S7 s7 K/ B% r) |
# A$ x% w, I6 e9 Y2 k' c' |- y1 b! {, B4 f特征选择步骤
6 o4 ~+ w- \1 x9 k9 |
1 {" s8 w& Y+ m& J+ p# Y2 j6 i O①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。) r+ F5 }# \* U' q2 e
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。
3 U( m, s3 @+ z: e6 V' E- G2 i③利用SVM训练
, ]+ q6 g7 R# O ?: ?7 e④训练结果在测试集上判断错误率
! y* N+ \% d- m- q( U* b/ @9 \6 |( _4 a) g9 l' v
MATLAB代码:
, V" A# t5 `4 L8 `6 J: N9 C, ?$ |! f( w) s" @
- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);# d: K! w8 S, d7 K; R0 J
|
|