|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。: P; u* Z2 X; {, J9 c
4 p. v0 {! @+ X0 Q8 e) f* G" q特征选择步骤
( [$ E3 ] d0 [9 g# ?
_2 u, m- N- b! ^6 P* N①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。
5 Q# D# V5 g2 U) O0 _②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。
1 T6 d. E7 x+ z6 Y③利用SVM训练- {0 }1 w2 ?, n3 i2 g* P0 y6 r {8 |
④训练结果在测试集上判断错误率
& [( g/ Y1 e! O4 q( W% a
3 Z" B9 c2 |1 T7 N1 ?- uMATLAB代码:
, U8 j9 f0 \* I4 D7 ^$ i* {
( G, W: j$ t" I# @: b/ Z" w5 K- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
. m6 |+ D) Y0 g- V3 c4 c1 ?, P- [ |
|