|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。5 V' g- ~ N( R/ M
3 `8 u* ~. L4 D9 Y特征选择步骤1 m& V, y) p4 H: d! d
0 M/ E+ _, T& j8 [4 c0 g4 h①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。
( m* ?; F( y* ?/ g: y2 @) l②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。6 G0 X2 b& G& Z
③利用SVM训练
0 p0 g' P# i) D④训练结果在测试集上判断错误率
$ K- g" B! X7 P8 u, v- u2 k5 z* s, T
MATLAB代码:
2 d; Z8 i7 O- \
0 m$ L0 x( L- {. d- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
: r* d/ l @9 E" @ v0 \ |
|