找回密码
 注册
关于网站域名变更的通知
查看: 414|回复: 1
打印 上一主题 下一主题

NSGA-Ⅱ算法C++实现(测试函数为ZDT1)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-9-24 14:02 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 pulbieup 于 2020-9-24 14:04 编辑 - O" Y9 j3 h  O$ L) a" V

; h2 U/ }9 F8 K在看C++实现之前,请先看一下NSGA-II算法概述:NSGA-II多目标遗传算法概述
& k! O+ ]  c8 t: G- A$ k! B8 E8 l! h" K' x" D
  a9 [6 t; m: o7 ^% B8 Q
NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:
; f% E8 U4 b! v" M2 E% J①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;
1 o# u. C5 E9 S& v- {②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;
) b0 J: F5 r4 L$ v3 J③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。5 H/ \$ l9 _  j/ v% K- s

8 [/ B2 A" y1 m% S* A头文件:
9 c& J/ k9 L  {  T$ U" G3 Y+ f: ~/ C5 b* z0 u- O8 ]3 `
  • #include<stdio.h>
  • #include<stdlib.h>
  • #include<Windows.h>
  • #include<math.h>
  • #include<time.h>
  • #include<iostream>
  • #define Dimension 2//基因维数,在这里即ZDT1问题xi的i的最大值
  • #define popsize 100//种群大小
  • #define generation 500 //繁衍代数
  • #define URAND (rand()/(RAND_MAX+1.0))//产生随机数
  • int temp1[popsize];//临时数组
  • int mark[popsize];//标记数组
  • //以上两个数组用于产生新的子代
  • using namespace std;
    ) u* [3 L+ {. ?; x; X5 e( w
7 z0 }; b6 A& g, t0 `* y9 D# W
$ `. m! j. Q# S: ^7 x5 p& t
个体的类声明:, L4 R$ p/ @8 W7 P2 b
1 t  F: b' B: s' p5 I
  • class individual
  • {
  • public:
  •     double value[Dimension];//xi的值
  •     int sp[2*popsize];
  •     //被支配个体集合SP。该量是可行解空间中所有被个体p支配的个体组成的集合。
  •     int np;
  •     //支配个数np。该量是在可行解空间中可以支配个体p的所以个体的数量。
  •     int is_dominated;//集合sp的个数
  •     void init();//初始化个体
  •     int rank;//优先级,Pareto级别为当前最高级
  •     double crowding_distance;//拥挤距离
  •     double fvalue[2];//ZDT1问题目标函数的值
  •     void f_count();//计算fvalue的值
  • };& |" S6 s9 w- B8 T; _+ L
* }; ]4 z) @5 o+ a

' O, G* t9 L0 L9 x. s1 {群体的类声明:0 j! y4 z4 h- T) w4 N4 w
0 l, g5 a- c: `8 e, d
  • class population
  • {
  • public:
  •     population();//类初始化
  •     individual P[popsize];
  •     individual Q[popsize];
  •     individual R[2*popsize];
  •     void set_p_q();
  •     //随机产生一个初始父代P,在此基础上采用二元锦标赛选择、
  •     //交叉和变异操作产生子代Q。P和Q群体规模均为popsize
  •     //将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,
  •     //构造其所有不同等级的非支配解集F1、F2........
  •     int Rnum;
  •     int Pnum;
  •     int Qnum;
  •     //P,Q,R中元素的个数
  •     void make_new_pop();//产生新的子代
  •     void fast_nondominated_sort();//快速非支配排序
  •     void calu_crowding_distance(int i);//拥挤距离计算
  •     void f_sort(int i);//对拥挤距离降序排列
  •     void maincal();//主要操作
  •     int choice(int a,int b);
  •     //两个个体属于不同等级的非支配解集,优先考虑等级序号较小的
  •     //若两个个体属于同一等级的非支配解集,优先考虑拥挤距离较大的
  •     int len[2*popsize];//各个变异交叉后的群体Fi的长度的集合
  •     int len_f;//整个群体rank值
  • };/ l% P( s2 s1 z$ Q( ?3 E

6 A3 ]* V6 Y! m) D
- {, G& L, r: N全局变量及部分函数声明:
) @! R4 {) i* ~! ~& F
4 o9 x; j( C1 k( \4 E2 M) f! [
  • individual F[2*popsize][2*popsize];
  • double rand_real(double low,double high)
  • //产生随机实数
  • {
  •     double h;
  •     h=(high-low)*URAND+low+0.001;
  •     if(h>=high)
  •         h=high-0.001;
  •     return h;
  • }
  • int rand_int(int low,int high)
  • //产生随机整数
  • {
  •     return int((high-low+1)*URAND)+low;
  • }8 `) k" b7 o% k. q) }& z
/ B8 C7 ^" h# @3 w5 p

) D6 [- M0 S# ?  Q关于排序函数qsort& F  D8 U: O8 l/ [/ M$ c
+ {! \& C: E( x0 X1 \
void qsort( void *base, size_t num, size_t width, int (__cdecl *compare )) B8 U6 B! e4 J
利用qsort对F数组按照cmp3排序
9 q: z% L$ V6 L! _& n
+ h" L. Q2 B" H* V4 j
  • int cmp1(const void *a,const void *b)
  • //目标函数f1的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[0]==f->fvalue[0])
  •         return 0;
  •     else if(e->fvalue[0]<f->fvalue[0])
  •         return -1;
  •     else return 1;
  • }
  • int cmp2(const void *a,const void *b)
  • //目标函数f2的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[1]==f->fvalue[1])
  •         return 0;
  •     else if(e->fvalue[1]<f->fvalue[1])
  •         return -1;
  •     else return 1;
  • }
  • int cmp_c_d(const void *a,const void *b)
  • //对拥挤距离降序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->crowding_distance==f->crowding_distance)
  •         return 0;
  •     else if(e->crowding_distance<f->crowding_distance)
  •         return 1;
  •     else
  •         return -1;
  • }
  • void population::f_sort(int i)
  • {
  • int n;
  • n=len;
  • qsort(F,n,sizeof(individual),cmp_c_d);
  • }; q  B& O" X- }, D! N* `& i

4 M* N$ E4 @$ u( T4 p$ W7 J3 {0 h+ {  w: W
群的初始化:( Y. d; ~7 Q% Q7 ?$ H

' P) h/ L* |0 d- H
  • population::population()
  • {
  •     int i;
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.init();
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.f_count();
  •     }
  •     Pnum=popsize;
  •     Qnum=0;
  •     Rnum=0;
  • }
    + O1 R* e+ D$ C0 }* i! K

2 F  V. ?+ `2 P7 _- I
$ s+ Q0 F8 E' @; [" r( w, o个体初始化:' e% B1 w# o/ _8 D) h7 w# G; b

) _* ]: ^: V) }4 S2 \
  • void individual::init()
  • {
  •     for(int i=0;i<Dimension;i++)
  •         value=rand_real(0.0,1.0);
  • }
    + r$ M; O7 k& [; ?4 J* T& ^; b4 E5 f

  `$ C! z, D$ V7 }- k0 Q  Y
$ x+ K# k6 [/ X6 O: p1 ?' x6 D: e# k/ d( |- y1 D$ ]3 {& }' O
利用二进制锦标赛产生子代:
! E8 [  N' ^: K" b9 }4 I! @$ g5 S2 P" u; g2 ~7 S
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N+ n8 m9 U$ s9 @" k6 Z8 e
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..6 O# U' V6 [" ?7 W* d2 n/ p
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
0 a! O+ m1 f) a$ `
8 O5 ~' }! D* Z3 G( ]
" s+ F/ V  q+ m: o" f- m; v$ b; Q3 w& I- @' H; P+ e

4 Z! O4 v2 y  H# L+ N  \
  • void population::make_new_pop()
  • {
  •     int i,j,x,y,t1,t2,t3;
  •     double s,u,b;
  •     memset(mark,0,sizeof(mark));
  •     t3=0;
  •     while(t3<popsize/2)
  •     {
  •         while(t1=t2=rand_int(0,popsize-1),mark[t1]);
  •         while(t1==t2||mark[t2])
  •         {
  •             t2=rand_int(0,popsize-1);
  •         }
  •         t1=choice(t1,t2);
  •         temp1[t3++]=t1;
  •         mark[t1]=1;
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         s=rand_real(0.0,1.0);
  •         if(s<=0.9)
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 u=rand_real((0.0+1e-6),(1.0-1e-6));
  •                 if(u<=0.5)
  •                     b=pow(2*u,1.0/21);
  •                 else
  •                     b=1.0/pow(2*(1-u),1.0/21);
  •                 x=y=rand_int(0,popsize/2-1);
  •                 while(x==y)
  •                     y=rand_int(0,popsize/2-1);
  •                 Q.value[j]=1.0/2*((1-b)*P[temp1[x]].value[j]+(1+b)*P[temp1[y]].value[j]);
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1.0-(1e-6);
  •                 if(i+1<popsize)
  •                 {
  •                     Q[i+1].value[j]=1.0/2*((1+b)*P[temp1[x]].value[j]+(1-b)*P[temp1[y]].value[j]);
  •                     if(Q[i+1].value[j]<=0)
  •                         Q[i+1].value[j]=1e-6;
  •                     else if(Q[i+1].value[j]>1)
  •                         Q[i+1].value[j]=(1-1e-6);
  •                 }
  •             }
  •             i++;
  •         }
  •         else
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 x=rand_int(0,popsize/2-1);
  •                 u=rand_real(0.0+(1e-6),1.0-(1e-6));
  •                 if(u<0.5)
  •                     u=pow(2*u,1.0/21)-1;
  •                 else
  •                     u=1-pow(2*(1-u),1.0/21);
  •                 Q.value[j]=P[temp1[x]].value[j]+(1.0-0.0)*u;
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1-(1e-6);
  •             }
  •         }
  •     }
  •     Qnum=popsize;
  •     for(i=0;i<popsize;i++)
  •         Q.f_count();
  • }/ A. R4 U/ j$ I8 G" t, c0 `$ ^+ W
' C! \3 V2 ^6 i. O1 E6 W
% @2 g* e& `1 F$ ~& V; i
  • void population::set_p_q()
  • {
  •     Rnum=0;
  •     Qnum=popsize;
  •     int i;
  •     for(i=0;i< Pnum;i++)
  •         R[Rnum++]=P;
  •     for(i=0;i<Qnum;i++)
  •         R[Rnum++]=Q;
  •     for(i=0;i<2*popsize;i++)
  •         R.f_count();
  • }! A2 B& |  t- i$ V
$ I) y4 [. r$ W: n, B, @" ]2 I

' ~" V- Q8 H5 X1 E. JZDT1问题函数值的计算:0 Y4 o$ b- P/ d) o5 h. M

& r, f, I4 u$ R3 r% I+ [
+ m$ Q) h+ o! ]# {, g/ N/ j5 w: }8 n8 C1 [
  • void individual::f_count()
  • {
  •     fvalue[0]=value[0];
  •     int i;
  •     double g=1,sum=0;
  •     for(i=1;i<Dimension;i++)
  •     {
  •         sum+=value;
  •     }
  •     sum+=9*(sum/(Dimension-1));
  •     g+=sum;
  •     fvalue[1]=g*(1-sqrt(value[0]/g));
  • }
    3 j4 I( O( S' M: H
3 v. N9 ?" _% C4 p! ^

1 x* ?+ _) z/ @9 f# w判断目标函数值是否被支配:
1 f& E8 Q# V9 n9 T+ z2 b1 R* h
! g2 g5 ?  k2 U) _% a1 U3 ]/ ~8 N# S
  • bool e_is_dominated(const individual &a,const individual &b)
  • {
  •     if((a.fvalue[0]<=b.fvalue[0])&&(a.fvalue[1]<=b.fvalue[1]))
  •     {
  •         if((a.fvalue[0]==b.fvalue[0])&&a.fvalue[1]==b.fvalue[1])
  •             return false;
  •         else
  •             return true;
  •     }
  •     else
  •         return false;
  • }
    - r3 q6 E6 @$ D0 s/ f. |

5 c  z+ b8 [0 [$ s* j- S8 G/ P, g
+ W" [) _  ~7 ?/ H- N快速非支配排序法:重点!!!: b/ c! x6 F, E) o( ]; r- E( c
& Y, ^$ [+ k! D0 ]$ P4 I
  • void population::fast_nondominated_sort()
  • {
  •     int i,j,k;
  •     individual H[2*popsize];
  •     int h_len=0;
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         R.np=0;
  •         R.is_dominated=0;
  •         len=0;
  •     }
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         for(j=0;j<2*popsize;j++)
  •         {
  •             if(i!=j)
  •             {
  •                 if(e_is_dominated(R,R[j]))
  •                     R.sp[R.is_dominated++]=j;
  •                 else if(e_is_dominated(R[j],R))
  •                     R.np+=1;
  •             }
  •         }
  •         if(R.np==0)
  •         {
  •             len_f=1;
  •             F[0][len[0]++]=R;
  •         }
  •     }
  •     i=0;
  •     while(len!=0)
  •     {
  •         h_len=0;
  •         for(j=0;j<len;j++)
  •         {
  •             for(k=0;k<F[j].is_dominated;k++)
  •             {
  •                 R[F[j].sp[k]].np--;
  •                 if(R[F[j].sp[k]].np==0)
  •                 {
  •                     H[h_len++]=R[F[j].sp[k]];
  •                     R[F[j].sp[k]].rank=i+2;
  •                 }
  •             }
  •         }
  •         i++;
  •         len=h_len;
  •         if(h_len!=0)
  •         {
  •             len_f++;
  •             for(j=0;j<len;j++)
  •                 F[j]=H[j];
  •         }
  •     }
  • }
    8 k7 G) E) b3 G  A, |

6 Y& p! U0 B% k5 J% o/ O/ D: b9 q2 D4 [% e( q* }0 [" ~; Y: i

  p- G/ d3 d' L2 s7 t6 {计算拥挤距离:重点!!!具体解释见其他文章!!!
( L; v  G4 A8 h; g$ Q' N+ b4 Y: L% T/ m! @9 D# H
+ n, a  [5 n% X6 Y
3 e, k9 `# W- N: p9 Y* F2 G
: V' R1 \- _, R5 ^
  • void population::calu_crowding_distance(int i)
  • {
  •     int n=len;
  •     double m_max,m_min;
  •     int j;
  •     for(j=0;j<n;j++)
  •         F[j].crowding_distance=0;
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp1);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[0])
  •             m_max=F[j].fvalue[0];
  •         if(m_min>F[j].fvalue[0])
  •             m_min=F[j].fvalue[0];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[0]-F[j-1].fvalue[0])/(m_max-m_min);
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp2);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[1])
  •             m_max=F[j].fvalue[1];
  •         if(m_min>F[j].fvalue[1])
  •             m_min=F[j].fvalue[1];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[1]-F[j-1].fvalue[1])/(m_max-m_min);
  • }# i$ C' O, ?: i0 u6 o6 V, T
8 U! {( }5 D" Z4 Z/ Q
# J& e4 c1 o% H) @
采集多样性的选择:6 h' ]3 O: \6 I, o- v0 g

, F0 @5 H) J6 p, P* o+ b
  • int population::choice(int a,int b)
  • {
  •     if(P[a].rank<  P .rank)
  •         return a;
  •     else if(P[a].rank==P.rank)
  •     {
  •         if(P[a].crowding_distance>  P  .crowding_distance)
  •             return a;
  •         else
  •             return b;
  •     }
  •     else
  •         return b;
  • }$ R/ x. u0 Q, g8 c% z2 R  N# [+ X
9 z: |; n$ A7 \: d! K8 N
, s3 c# w3 g# r

& V: K- N# y- d- f主要操作函数:
- C, ]! H' a; T" y5 U) Y; f- ^% N& T( F) [0 W
  • void population::maincal()
  • {
  •     int s,i,j;
  •     s=generation;
  •     make_new_pop();
  •     while(s--)
  •     {
  •         printf("The %d generation\n",s);
  •         set_p_q();
  •         fast_nondominated_sort();
  •         Pnum=0;
  •         i=0;
  •         while(Pnum+len<=popsize)
  •         {
  •             calu_crowding_distance(i);
  •             for(j=0;j<len;j++)
  •                 P[Pnum++]=F[j];
  •             i++;
  •             if(i>=len_f)break;
  •         }
  •         if(i<len_f)
  •         {
  •             calu_crowding_distance(i);
  •             f_sort(i);
  •         }
  •         for(j=0;j<popsize-Pnum;j++)
  •             P[Pnum++]=F[j];
  •         make_new_pop();
  •     }
  • }& ~3 x5 B9 M, {6 ]+ X! [
4 j0 b' n$ D, R) r, R% r/ |5 w$ {
/ h* t6 K# g, Q1 r. w( n( ^" A
主函数:  X' N8 ^0 `2 n6 T- }7 ^5 Y
! V0 ~$ w$ b0 G) v* t
  • int main()
  • {
  •     FILE *p;
  •     p=fopen("d:\\My_NSGA2.txt","w+");
  •     srand((unsigned int)(time(0)));
  •     population pop;
  •     pop.maincal();
  •     int i,j;
  •     fprintf(p,"XuYi All Rights Reserved.\nWelcome to OmegaXYZ: www.omegaxyz.com\n");
  •     fprintf(p,"Problem ZDT1\n");
  •     fprintf(p,"\n");
  •     for(i=0;i<popsize;i++)
  •     {
  •         fprintf(p,"The %d generation situation:\n",i);
  •         for(j=1;j<=Dimension;j++)
  •         {
  •             fprintf(p,"x%d=%e  ",j,pop.P.value[j]);
  •         }
  •         fprintf(p,"\n");
  •         fprintf(p,"f1(x)=%f   f2(x)=%f\n",pop.P.fvalue[0],pop.P.fvalue[1]);
  •     }
  •     fclose(p);
  •     return 1;
  • }7 {- t4 U" e& X9 U9 f! |

, S3 W  Q) r7 v9 S) O8 R. N# N7 [' B, H! E9 e" {

, [8 S& W! Z6 u5 ]1 `ZDT1问题图像及前沿面。
1 \" i, Y- d5 Q/ L* v! K 7 c# k0 c" }0 [/ h- s* ~
$ O9 N8 o$ v. m" z

. A; \" w* q* V; _' W" ^* w4 C$ a4 M% M$ T; L- z9 _
测试结果:
( _/ x% Y' w% ]% X! f. I, E

该用户从未签到

2#
发表于 2020-9-24 14:51 | 只看该作者
NSGA-Ⅱ算法C++实现
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-8-14 07:09 , Processed in 0.156250 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表