|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
& O8 p* ~. H8 k/ {
poly
7 u1 d: q' F: x) CPolynomial with specified roots or characteristic polynomial4 D: ]/ M: v, E$ C0 X& q
0 x. J4 P4 f4 ]" z5 F4 d# w
4 u* M7 y9 P' A6 M/ a9 nSyntax
& q( \( w3 o: B: m
3 b2 N( a! T, n, `3 a+ q5 w9 |p = poly(r)
( V* D" l" P% x( ^
6 c# ?% C V {3 {p = poly(A)' X& t$ R% b; P* a
$ q6 [- }/ g. i, I
# \+ x1 w7 E* s1 |5 d; a% Z' |Description
/ K- t& m3 N) J
0 w. F' q1 a5 t4 b4 ep = poly(r),其中r是向量,返回其根是r元素的多项式的系数。3 a# G4 l2 B1 |
- t# U# y) k. c7 v Z l, w! Z8 V由多项式的根求多项式,由特征多项式的根,即特征值求特征多项式。: q. P( {" ?4 c& b4 m: y0 Y
9 ~3 j& |" V9 s; M$ l. s$ [
3 c" Z+ O# {5 D' c% u" Y特征值的特征多项式# B8 H% l7 t- x
/ N$ l* e3 ]/ i6 B( r
Calculate the eigenvalues of a matrix, A.3 Y! l) [4 u/ d
. y2 v. A, G, w$ A. E$ w
! M) [3 E W3 t m' N B
计算矩阵 A 的特征值
& _1 a J) _8 U* ^9 N. C9 `
6 |& v4 Z- w0 `# I" T* NA = [1 8 -10; -4 2 4; -5 2 8]7 W5 W4 I0 l, z' n4 J+ Y7 W
$ \5 g; G# G1 y, m6 W% S# @, v5 i
A = 3×3
" k m7 I+ G$ x7 a! H
1 y9 ?# c8 A7 U5 I4 ~ 1 8 -108 c. e' c: m2 D# ?2 c1 W& z
-4 2 4' x& o) h" i2 H; t
-5 2 8; R: x, _, [+ d" A' O
8 i9 g$ T" p8 E( u/ l! Y. T
, y) Y4 j6 Q: Ye = eig(A)4 U+ s! U0 d/ t; A
% y8 |: k& M" F$ `
: x' E9 z7 v* ~ {3 c
e = 3×1 complex0 M" l$ F g8 u! v6 Y/ f( f# }
5 J6 S" i4 Z* h2 H; l6 T" a 11.6219 + 0.0000i& e" L. S$ t4 \- f6 q T; n
-0.3110 + 2.6704i; c* ? Y v6 \4 |' s! V
-0.3110 - 2.6704i. t. y! m) C* Q. I& ~
, E. w8 W0 ~8 q) J( x! q' N4 }
( c8 E3 ^. c, D$ ~! d5 d
由于e中的特征值是A的特征多项式的根,因此使用poly从e中的值确定特征多项式。
/ T1 s! p2 [$ [- X& n0 n3 @( e: B/ M- D P. j
p = poly(e)
) ?) K' s7 Y$ \; S2 e$ t' y3 K9 B, p @" ?: Z- l
p = 1×48 |9 v" K% Q2 {6 u" `( ^; B
* V% N3 o2 |4 h5 _6 s 1.0000 -11.0000 -0.0000 -84.0000
+ k" p- M/ g& |. U- V I- k) L0 G# M% A/ a. \' U
所以特征多项式可以写为:
1 g0 A# v+ z# F) M# e6 w( p/ V" s" s K
x^3 - 11x^2 - 84 = 0;
0 J! w0 R% o0 ]* f$ ^
) E- w7 P0 @, Pp = poly(A), 其中A是n×n矩阵,返回矩阵特征多项式的n + 1个系数det(λI-A)。2 D: k# ]' H- o! R
I5 S7 w8 r3 }. N* F7 |9 T- _
由矩阵返回特征多项式的系数。5 L* H) X0 E9 g! N) O
, V7 B. s$ ^0 D9 k6 Q5 g% X
8 _9 E& D/ _8 J; @' ]% BCharacteristic Polynomial of Matrix
1 @3 W" j4 \1 D/ K
- g) X3 p+ M7 _0 e" q6 ^% VUse poly to calculate the characteristic polynomial of a matrix, A.( R5 d1 p- d0 w# \9 E
5 m0 Q I6 B) y9 N# GA = [1 2 3; 4 5 6; 7 8 0]/ E! C J n a2 Y+ H
! }7 @- h* w# s
A = 3×3) B5 i6 t1 |* [' y; Z
6 y% N( Q. Q% L5 B4 P# v0 N* l
1 2 3( W7 N7 i5 _# E/ f
4 5 6# ^, P7 a1 q+ _9 f
7 8 0
" K; H7 v; y5 b
9 `) c8 M8 l, b* |
: @$ I1 b( p. t, @, V `1 Mp = poly(A). L: t! M0 j/ A+ {+ i6 K
2 z4 t8 y8 t3 ?; Y. Z! Q- p
p = 1×4
; o3 }4 C7 ?# x8 i% K1 u( B$ E/ C5 R, f8 \3 g% O# U
1.0000 -6.0000 -72.0000 -27.00001 l/ {3 K5 s/ p
' C7 W; w* }; n9 zCalculate the roots of p using roots. The roots of the characteristic polynomial are the eigenvalues of matrix A.. E8 i; P! f L8 O3 H' ~
# C1 ]- B; M, C4 b1 x, w5 Wr = roots(p)
- Z! v2 |; ~5 Q, z; S0 w7 d6 v* t5 |7 W: x
r = 3×1: M! Z" P) Z% P% g/ [
9 w* F5 n+ o0 q0 d, U 12.12293 E' g* W' M4 \ G/ ~" W+ z
-5.7345
1 `6 _' m+ _2 c$ A2 h% |' l+ b -0.3884
+ A- t; {9 }* I& Q再由根r来求其多项式y,可预期一样,y 和 p一致。" j; t. e( O: T
9 m/ k2 k( C' L) l2 ?0 G! @
( W, w' G6 l. ~: C J6 c- c; F) c9 s. v$ o
" V' c: J9 o0 u* t9 D u$ O* c/ Y
+ Y) c% L5 `' v" h6 m( t# ?+ l I/ N2 j3 A0 V
4 x. i5 g: f$ w- F. U
|
|