EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。 s3 J8 D& e5 R8 i: I1 c: v- v- s
3 g4 {2 ?* `& }7 e+ q- O2 Y
在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data
4 ~( C' o8 Y" z+ B5 p滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。
6 M& E; T; B5 tThe following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data.
(以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。
; |3 f7 D) e8 g/ t9 ^0 ^5 ]: S" `% [4 j' U6 N. W
clc
! @; V$ v& l8 o2 s% W3 `/ q! e: F: r: U* b$ c: ~" x
- - I9 N4 O- W$ L/ m' r2 s
3 `) |( u! F( Aclear5 }1 h- N+ [0 }' P
W6 Q9 B- z+ A/ v7 j; I' b
" @0 h2 W7 W5 \0 d/ o1 ]" B# g* P( o5 t* b, c7 l3 n* V* a
close all% l9 [3 b& {' V0 z+ d1 H
3 J) p- A& m; N: [- 3 ?6 U3 e& i- C3 ]
3 _$ G6 m5 U0 T. |# X* a# `
" a: A! g1 i5 E z( e# B7 I4 h6 q( X3 L8 }/ A) \) U
% G: F& K7 ~$ F1 Z" ?% X! @& \
, k& g3 f& S* v( z- Y! \; D% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.4 D0 k! a4 _, p/ Q8 }: d" S! M
. E; c y8 }" Q' _8 f) l& f
- $ P: s+ n4 `: m, {
( ]: ^; e% H9 Z2 R
load count.dat3 S q M! R4 U, B
" p" J6 s3 h& B4 [2 h- n7 r - ! P, t7 I a0 A4 ]: Q6 s$ m
7 @) M; i+ t) H4 x2 q% Lx = count(:,1);
|! P; q2 R' W' y( c/ S/ h4 K, F+ I9 ?3 k4 w4 z
- - v- e" ?) {1 Q5 g u* n4 Z: h
+ { C n( p6 D% M" N
' J* z& O' Y& K+ f/ M6 X
- `( |% Y1 p" x+ P7 q
+ E4 [/ [" H# `; n& t. E- b1 [; `! w* h! W. L
% Create the filter coefficient vectors.
8 \8 |3 Y5 X6 D( q! t( G; V, `; B! Q; I; ]0 o! n# M% Y3 i
- ( d7 s l; Q5 ]) v+ D$ U/ d
: ~7 I1 q; a0 d3 C( |
a = 1;9 E# b! [- j _9 h
# U+ o/ y b5 L5 ]( j7 x
- + q" y; M: b& J% q: l3 T
4 b" v+ u; j* t$ @b = [1/4 1/4 1/4 1/4]; }9 W, ~# x" b+ P/ p9 h
/ e: X6 E& h2 c: L
?3 q/ G% I6 k# {# x, d
2 \+ \8 R% d, ]6 f s W' |; J
% y+ J6 \- w: c ? i, @+ q0 S8 Z' W+ W" ~6 D u
- f3 B3 V+ C d8 Z p
6 Q- R2 Q7 h/ Y) \5 r0 V* {' y" M
% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.
/ {* t( R; E- p7 B4 L# h( m6 J) b( u: m/ s$ x) o% J+ g3 a
; I& E2 l8 L, G# d+ A% B0 ?! P* t
9 Y' X, @) h. T' }: C( n/ s( p; A5 Hy = filter(b,a,x);7 I2 ?. i+ ?0 D \/ Y( e
/ ~2 q! B/ W" b1 q. V8 J2 g* k- 9 E. L+ D- M+ o( P
7 f3 I; ^) c) K7 r; `: Q3 `* @# ~! m4 F+ r8 Q$ x7 W
; M( ]3 `' b* D, a' y - 5 D3 u5 x9 Y# m
. m Q- U( Q0 j% {6 A! s1 X( K
t = 1:length(x);
/ U: q; W: Z0 C$ E) T5 O) h7 _1 [8 _# S9 N
4 w2 V! x0 p" U; Z( d7 R3 R8 U3 t" g7 T- m6 H! \! L7 b4 t
plot(t,x,'--',t,y,'-')
6 j; f, v: a$ o4 P* B5 f3 F( a# u; R- M0 z1 L) J) E! M
- v1 F5 |2 [9 A; ~6 c6 [! O. D/ i% r: J+ n U" ~; }* a* ^8 g9 k
legend('Original Data','Filtered Data')
) q' ?6 R0 n& ], ~- H" I9 K6 I. E, X
) [' H3 s% v# p$ _. M F ^- 0 g8 H! O4 C* [
# I' U: x2 c$ t! v! D* R; w
3 R3 C: r+ [! _/ u& A" `% f" S7 H6 b o; z) T" H' U
' i H1 e7 T# x. D0 I* ^
Modify Amplitude of Data2 {9 f# p. l2 t. P0 s' n
This example shows how to modify the amplitude of a vector of data by applying a transfer function.' w" ?9 S7 d* S' a
In digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation 此示例显示如何通过应用传递函数来修改数据矢量的幅度。
6 a* T, H& u8 L" h5 ^在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换
3 \. e k3 E2 F3 H
" g* {% G8 ~- u/ N/ D( His the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat.
0 S3 m% I8 S1 {# k4 V( o
+ a# ~, u$ [! S' vclc
# f/ O, }$ i5 ?6 `! ~ k1 Q. ]- }. g. u/ i: i1 n2 Z
- % \& N2 u4 g a# w! S
7 o) D# ~8 R7 A! U1 Kclear
1 b$ h- s l+ A( T0 o; \6 d5 V
6 K! j! G+ _" Q( W7 _! B - 8 S4 Z+ B6 ^+ Q) h/ o' _
; G1 j8 R. m' T( o( G- {: O9 D
close all: u1 l$ V8 T8 G- E; A! {8 J5 Z0 f
0 B ^) v9 ?& w( p
1 f6 |: ~( x+ Q0 r5 i1 u, k. _7 `9 F2 N1 ~# U( i& p9 j0 K6 x
6 e% `% S, Q& O; y& f( g$ Q, I, e0 o+ e2 `9 x
- 9 O x" |- V, o5 m u: K
4 m2 P% m" _- I# Q) k ^ r% Load the data and assign the first column to the vector x.! P( a0 f p- i, D6 f3 [
8 q- `5 t/ ~ q- x2 @6 v
- - B6 n+ u7 |8 F$ m. B$ [
+ [+ Z6 A/ d( Y$ ^! W9 ]3 O. M
load count.dat
& I$ E# p/ Y9 H; G$ b" U- z: j* h/ v. @2 [2 z. x& ?/ v3 Z: i
% Z7 Z" ], j5 B* v" z2 N8 O0 @3 V1 e
$ v: I. B' d( V) ?8 a' a, l# ~( r! bx = count(:,1);/ G0 @$ B5 Z) p b
( A5 P4 F( n$ }. ~3 M( [
0 L. k- _5 U8 M# @1 ]+ b5 T% x6 X) | i O& p/ X
' _, e0 r0 ` K
! }: y) F, n7 V+ H
5 h$ z# `% P% e) U+ c; }8 y& l+ s( N1 g7 H
% Create the filter coefficient vectors according to the transfer function .2 h; h$ X1 m% m% l) f. {1 b+ c
/ Z7 \' l2 U! W8 w8 ^
- % W1 d* ?( i: o5 Z4 j4 j7 r
) r: \5 h* `! G, N) @2 l- O( \5 O
a = [1 0.2];
8 r$ t$ \3 X1 j( |" K2 i/ z# a
/ T; b5 Z& Z8 x/ w - 2 G6 y$ y* C5 i5 X3 X
/ `9 O- A1 j* X' X! g+ C$ o& Qb = [2 3];
1 j9 s( x9 |- [" J
5 Z2 i: T, M! x - % D( k) X2 x1 b3 o: K
2 A( I8 R! J1 Y. Q) w# C) w @
5 b& x% Q+ B$ K! E2 y5 M
7 R, q4 b! @% [9 U$ T - % H7 b, g4 ]5 S4 \# S. s1 t
) S2 x5 n7 u. b% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.
8 L2 Z2 |3 G9 A& O+ M- H* P Z/ {0 Q7 ~+ s( t# A3 r. ?& U1 {
+ z9 `5 {3 U) |* H# [; C8 i! z$ d
. J! X y* k/ S) Q9 E( jy = filter(b,a,x);
9 j0 H! } O6 m2 ?! U. i8 L. R! w, Z& `' U `- z
- ( Y8 C9 ?6 ^: T/ A
% T- k2 E: }7 o$ S1 P' Z. U
/ I+ v# n: d2 f2 i n) C' |0 |% J! L$ W) C
+ @( @2 ^6 a ]9 T) f# ?$ v7 n5 Y4 F! d q: {9 `
t = 1:length(x);1 I, }" ?5 [) _4 f
+ t6 _! m& V# W- ! s) Q6 f8 w% u, F) b% r0 u$ K$ g# H
9 j7 U4 C8 {9 h& n8 dplot(t,x,'--',t,y,'-')
+ J, |. v5 M0 h, C/ e) P/ O; X$ M8 `
- 9 m7 j* T3 b j. S% ?7 H$ @
& j! z: p- p* d: s; N
legend('Original Data','Filtered Data')
7 @: X% S% _2 [2 z" I2 e5 `$ n& P1 C. g% R5 `
- " n, Z2 C y& y! y7 k
1 z6 l- V0 [( {. O
3 ~5 F6 Z6 Z1 v- d1 b) Z1 V
! ~/ `! F$ G0 E7 C$ Z; R
/ o% a B9 z: C* S
& p; X4 D4 p5 ?, ], g# a @2 t
; a( Z- d6 ^! q" h* {/ i3 g2 F9 W
8 f8 g9 Y) ], @4 s- u
|