TA的每日心情 | 开心 2019-11-20 15:05 |
---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
CSP 共空间模式的 Matlab代码实现 / F! N. E' [5 [
& U/ {+ \9 v7 n% e# |
- function W = csp(X,Y)
- % Common spatial patterns for spatial filtering
- %
- % X: EEG data of class 1 (channel x sample point x trial)
- % Y: EEG data of class 2 (channel x sample point x trial)
- % W: the colunms of projection matrix W are the spatial filters
- % d: eigenvalues
- %
- % yuzhang 2013.12.16, ECUST, China
- %
- %% Compute covariance matrix for two classes
- Cx = zeros(size(X,1),size(X,1));
- Cy = zeros(size(Y,1),size(Y,1));
- for i = 1:size(X,3)
- Cx = Cx + cov(X(:,:,i)');
- end
- for i = 1:size(Y,3)
- Cy = Cy + cov(Y(:,:,i)');
- end
- Cx = Cx/size(X,3); % covariance matrix averaged on all trials
- Cy = Cy/size(Y,3);
- C=Cx+Cy;
- %% Solve CSP+FC joint spatial filtering
- %[eigvec_C,eigval_C]=eig(C);
- %P=eigval_C^(-0.5)*eigvec_C';
- %S1=P*Cx*P';
- %[V,eigval_S1]=eig(S1);
- %[sort_val,idx]=sort(diag(eigval_S1),'descend');
- %final_eigvec=V(:,idx);
- %W=(final_eigvec'*P)';
- [W,D] = eig(Cx,Cx+Cy);
- [d,idx] = sort(diag(D),'descend'); %eigvectors sorted via eigvalues descend
- W = W(:,idx);
6 a+ q) d: i3 b& X, g0 k
1 w+ P C( B' ~# b0 l |
|