EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
matlab 实用教程——符号运算 5 j* G$ f/ c$ \' v& _) }+ g6 P
+ M" T7 l0 h" ^0 B& k* l4 i
& Q- ]6 _. g, G
命令 +、-、*、.*、\、.\、/、./、^、.^、’、.’ 功能 符号矩阵的算术操作 用法如下: A+B、A-B 符号阵列的加法与减法。 若A与B为同型阵列时,A+B、A-B分别对对应分量进行加减;若A与B中至少有一个为标量,则把标量扩大为与另外一个同型的阵列,再按对应的分量进行加减。 A*B 符号矩阵乘法。 A*B 为线性代数中定义的矩阵乘法。按乘法定义要求必须有矩阵A的列数等于矩阵B的行数。即:若An*k*Bk*m=(aij)n*k.*(bij)k*m=Cn*m=(cij)n*m,则
,i=1,2,…,n;j=1,2,…,m。或者至少有一个为标量时,方可进行乘法操作,否则将返回一出错信息。 A.*B 符号数组的乘法。 A.*B为按参量A与B对应的分量进行相乘。A与B必须为同型阵列,或至少有一个为标量。即:An*m.*Bn*m=(aij)n*m.*(bij)n*m=Cn*m=(cij)n*m,则cij= aij* bij,i=1,2,…,n;j=1,2,…,m。 A\B 矩阵的左除法。 X=A\B为符号线性方程组A*X=B的解。我们指出的是,A\B近似地等于inv(A)*B。若X不存在或者不唯一,则产生一警告信息。矩阵A可以是矩形矩阵(即非正方形矩阵),但此时要求方程组必须是相容的。 ; x0 @# Z3 Z. P( q: u2 `
# G) I1 R: ?+ C |