|
|
方法一:& M: k3 `; U- S# l! j
先对曲线方程(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L=0两侧同时对x求导
( C: I" q# B/ S! B6 q7 s得到x,y(x),y'(x)的关系,并求出y'(x) = F( x,y(x) )的表达式
" f2 c4 x: z" u# D4 G然后将切线通过点的坐标(x0,y0)带入联立方程组中/ m$ `/ x5 R0 }) |2 M/ Z$ w$ _* v6 f
(y0 - y)/(x0 - x) == y'(x) 即 (y0 - y)/(x0 - x) == F( x,y ),几何意义是,通过已知点(x0,y0)以及曲线上一点(x,y)的直线的斜率是曲线在该点处的导数
' l' p& H) M ?( g1 Z( Q(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L == 0,几何意义是,点(x,y)在曲线上, @1 |% v& ]8 y( B
联立方程组求解,可以求得两个切点
% ^* X4 h. A( H! c- W" Y8 I1 F(7203/4 + (136073*sqrt(7/374))/8, -(1715/4) + (50519*sqrt(7/374))/8)与. o$ W0 L' k( H/ ]! r
(7203/4 - (136073*sqrt(7/374))/8, -(1715/4) - (50519*sqrt(7/374))/8)
' ~6 Z! Y# P6 J0 {数值解即(4127.74, 435.179)与(-526.244, -1292.68) |
|