|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
设矩形脉冲
是脉冲响应
的LTI系统的输入,求输出 y(n).
3 h; j5 r+ g7 z7 |* q; j0 R( v, P) n$ C; D2 o# I7 d6 Y; H
下面的脚本中用到了一个自定义的函数,也就是两个信号相加的函数:
# }# x4 r5 F# A! W9 `; H; f& d9 n4 ^, J" I
function [y,n] = sigadd(x1,n1,x2,n2)
4 j- M' L: K2 I# u8 O% implements y(n) = x1(n) + x2(n)% g- M/ C2 V$ `, `4 t; h1 R2 M% I2 k* r
% [y,n] = sigadd(x1,n1,x2,n2)
! ?' l! [6 U- Q2 w L$ X" O+ k6 K%——————————————————————————————
! S8 q' A0 H, y& r% E A9 ]% y = sum sequence over n, which includes n1 and n2
v! E. ]. V4 q2 ~# Y% x1 = first sequence over n1" I: T/ d# {5 ]+ y
% x2 = second sequence over n2( n2 can be different from n1)% o4 Z0 _& E, w$ T! a" p4 ]
%
* B1 V( `1 j( sn = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n)
; i% Z X) A& }, q4 Ey1 = zeros(1,length(n)); y2 = y1; %initialization% a% I- \3 V1 j+ @2 h
y1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y1
, H6 H/ e" F& y6 N, ny2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x1; %x2 with duration of y2: o+ B, f% A. @: [* R: S8 R% t
y = y1 + y2;
8 k( X! k/ X! k( t! `, N
0 ]. p7 E3 U8 h& p2 e0 y7 q! ]2 k+ ]
直接给出MATLAB脚本: g9 Z! K$ T. d8 `! ~
, `2 p* G p) G6 q) k y0 j. Tclc8 \" r% y: o! R7 {; j, L
clear
! @' n. X' r: Xclose all
( P; t4 _2 u& A- o9 b1 U' D
7 S7 k6 s3 S+ @ y% help stepseq
4 g6 n( e" x* y! h7 c% generate x(n) = u(n - n0); n1 <= n <= n25 M! y% b) z) }& U: x1 u
% _____________________________________________( [8 s& l4 y. u5 e+ _) D
% [x,n] = stepseq(n0, n1, n2);2 k4 n/ l, g% u- V, L' |. w; N. ^
[u1,n1] = stepseq(0,-5,45);1 |) `; c+ A" l. ^
[u2,n2] = stepseq(10,-5,45);2 t# s5 a" l7 W; _9 [9 j' r
M$ q9 a0 N$ P. u" H& C% generate signal x(n)6 y. \ N* O8 ?' |
[x,n] = sigadd(u1,n1,-u2,n2);
- R$ Q- F8 w" _- L, c$ {1 W) q) y' q
% generate signal h(n)
( \& d6 N6 j. o' a, _m = -5:45;
8 C' h. \% H! l5 C7 r Y ih = ( (0.9).^m ).* u1;
- r6 ~8 ] b6 v s4 F7 L- b" |
7 q" p( n+ b' y2 b! E! c3 F
8 ]: P2 b$ Z6 _: X% the convolution of x(h) and h(n)
8 L) k6 U" b. Ay = conv(x,h);
4 v. d2 u2 i+ V% ensure the index6 m \% _9 R9 s: l! E
nyb = n(1)+ m(1);
) _" O9 Q* ^% s! x: vnye = n(length(x)) +n(length(h));
7 ^! \8 l0 Z7 Q. a0 D/ ^ny = nyb:nye;
: a. ^+ v0 g6 @# ?$ M6 j% C0 ]% q0 ^
0 K ?: S% n1 e' R. [9 e
subplot(3,1,1);
0 z- P3 q+ U! I7 y! bstem(n,x);
j; k# H W0 P Rtitle('x(n)');; k* U# C9 b( J4 [* n( Z
xlabel('n'); p6 D `* l% V. U1 Z
8 x, ]7 _6 J5 d1 f1 Qsubplot(3,1,2);
7 B8 p( j! a' @2 Q( ystem(m,h);
7 u" k2 O7 X k! ~% q" M4 Mtitle('h(n)');
3 _& v) K: x1 j, Lxlabel('n')5 k9 k5 a) D- Z/ U' d( y9 ~
9 B; a" e5 p! F
subplot(3,1,3);4 |3 ?3 f- X0 A# T: A
stem(ny,y);
; ?% r8 h- D0 u @' A9 @title('the conv of x(n) and h(n)');+ [6 J$ M2 ]3 O+ R/ S+ b: g3 ^5 _- A1 W
xlabel('n')8 a3 u2 M1 ?8 M- A/ g( B2 f1 w$ h7 V
xlim([-5,45]);
8 Q4 l( s. t, M$ H3 c7 a! E k; R, `7 d7 d3 G
) x" p" h2 L4 t- g
+ Q }8 @9 Q \& ~1 C$ {8 V
. K5 E6 o2 L4 g2 ]" o
' Q1 o z% Y, z: S5 D9 N* i& X K; l. P0 I; Z- ]) b
9 Y, k' q) m) w4 ^. D: L6 ~5 r* D* @& [0 l" \/ A) K5 { ]' `
|
|