找回密码
 注册
关于网站域名变更的通知
查看: 423|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 $ G* s% d9 J, B9 g6 G% ^: M1 [; h2 I
- g& l. f0 R( b  p6 V, g" @% ?
: P! T2 `3 K: c4 H1 J
NSGA2的过程为:
3 _4 Q0 u& ~+ G/ p2 {6 c# ~' V
' `( u  `! Y/ L5 I1 ^( @( R1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
8 ]" G- N) T7 q  k
- g$ o9 e# m4 r" `3 C2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
7 s; U; [5 O/ w8 W; C7 W- ^" k! t/ c5 D/ [
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
3 K4 X# |/ k3 P5 z! \
: x7 n: S5 [0 Z下面是完整版的代码:
" e* N" d, l0 v" Q! e
5 r. A0 y! I" q+ y" H$ P( N0 Y8 Z①nsga2-optimization.m
0 f: @, w$ g" X1 d$ W* O  J. _
- W1 T3 A& k2 n8 |# f* G  kfunction nsga_2_optimization
0 g: {0 A5 ~6 M7 D0 j%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%- t& M2 V! t/ `: k) o% h
%此处可以更改2 l4 [# y8 W6 W* o
%更多机器学习内容请访问omegaxyz.com7 x% G$ X% A/ u6 [  ^0 H
pop = 500; %种群数量
5 ^$ x; W7 L( n* K$ x& E& {gen = 500; %迭代次数- r' a4 e5 _: T7 b* F7 ]
M = 2; %目标数量% `$ g3 F1 k$ a2 @. }8 ]
V = 30; %维度0 S/ U: V7 V, w
min_range = zeros(1, V); %下界
. K8 P: u( d9 M( Cmax_range = ones(1,V); %上界, `" j- K3 ]0 L5 \/ Q" J; y6 A+ _$ W
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%# y! x9 O* Y! a) x2 _3 y
chromosome = initialize_variables(pop, M, V, min_range, max_range);
* m) b: E" Q/ ?9 ]chromosome = non_domination_sort_mod(chromosome, M, V);8 E" W3 O/ e! h& l2 u; w  Y

8 O. }+ J1 }  P- _. ?for i = 1 : gen  t" V0 e( T" S% S( B
    pool = round(pop/2);
7 t/ s; ^( l4 z2 z, D  O% n) x% N    tour = 2;( k% }4 R& v) D/ ?& l
    parent_chromosome = tournament_selection(chromosome, pool, tour);
, x- i/ B) D! [3 F; Z    mu = 20;
* r! g, h" A  X    mum = 20;( v6 m' U9 Q0 z9 q- z& t5 w# Y  |) j$ g
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);; h9 J) f# `+ G6 @6 o
    [main_pop,~] = size(chromosome);# K  G/ Y+ F5 R; e: @8 E
    [offspring_pop,~] = size(offspring_chromosome);
% f# B: O; m; s6 B    clear temp
) j4 U/ v2 \( ?, V* v    intermediate_chromosome(1:main_pop,:) = chromosome;& M) {6 G; {  N5 O4 K4 o9 _+ c
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;5 i8 G: y6 c% U
    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
- C+ P$ @% u) A  s- Z( Z    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
& ]# _* J- |* J/ m' J    if ~mod(i,100)& X5 t" e# ?! z" E8 z
        clc;
9 d* f$ n  P$ v4 U, M* e0 i        fprintf('%d generations completed\n',i);
! [: t' g* P3 e4 ^. }# T9 J    end0 c% L+ x/ w& V
end2 S: d% l! A( l, P( K5 O
9 P. ~9 U7 l3 i6 {
if M == 2
& t  r, Q* V9 Y& `; t    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');. Q, k9 k) W# s% m! Z
    xlabel('f_1'); ylabel('f_2');
5 x1 l: U7 n! D* q+ c9 J) q    title('Pareto Optimal Front');
# V- v1 F/ G$ d& W# u4 qelseif M == 3" ]# w6 y8 J. E
    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
, a8 Z" j& r# m( r  ^/ j" L    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
+ Z+ P' |# F- I    title('Pareto Optimal SuRFace');# j4 ^, h# n) m1 g
end) x0 z. N& w2 N# l3 L5 K
/ l. m8 A! o9 d! W

2 }3 S  c+ m) [; k②initialize_variables.m
9 x- N! y/ W) [  p8 E2 C: S* a! b/ B& y4 I4 a( }% B/ _4 {
function f = initialize_variables(N, M, V, min_range, max_range)
: q: l# ]5 v, i8 {  fmin = min_range;
' n- i. Z# [9 y6 z5 ]max = max_range;7 `/ k1 c: p5 s& ~9 p
K = M + V;/ {+ e% x$ P. D- l: R* _9 m
for i = 1 : N$ g  B8 @6 I5 h
    for j = 1 : V
+ m% Z+ |" n" q* e        f(i,j) = min(j) + (max(j) - min(j))*rand(1);8 s( L4 A2 x; B! K0 x5 c
    end
9 U) L5 d! f" S: W" i( P4 h3 E+ ]    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);( C- X% }1 n. \# X9 R2 O
end
2 G9 x" h  G3 j, r1 Z& J2 M5 D. l. C/ m; }. H& m' [- [0 K; h

3 A# Q$ I& t& e# _③non_domination_sort_mod.m3 |/ C# _& |2 L
0 o0 N0 W6 I+ C- p1 l* K: }
function f = non_domination_sort_mod(x, M, V); Z4 Z+ F- }8 u5 p/ x
[N, ~] = size(x);9 p5 k. }6 R6 T
clear m0 V; R! X$ E; ?: z2 d4 C9 ]( t, s
front = 1;2 o2 T  O& F' b
F(front).f = [];
" `$ ?' S2 m" {individual = [];7 v5 ^7 |9 ]& `

) N- a6 M$ @9 R- I) Tfor i = 1 : N' v4 D" z9 [9 y7 Y1 y
    individual(i).n = 0;
. e9 A# ?  t. h/ X% @! e0 z* W1 ^- s/ ~8 V    individual(i).p = [];+ d) ~9 X) ~% D) y
    for j = 1 : N
* ?- V6 a' M" v2 S% p! x        dom_less = 0;; U7 C+ G: b) J
        dom_equal = 0;
9 L7 B$ r& T7 d' j9 F, I" x        dom_more = 0;' `% Y$ W# a$ t5 Z1 i: Y# K
        for k = 1 : M5 C8 I$ g) O  F+ b# y. j
            if (x(i,V + k) < x(j,V + k))3 s( \6 g1 m& N; |# K3 u
                dom_less = dom_less + 1;& x+ v! B* D; c3 [: [0 |
            elseif (x(i,V + k) == x(j,V + k))3 ~. A7 H7 E/ `) t
                dom_equal = dom_equal + 1;
* X( y: u- d$ o1 s            else7 E! ]  R; e! R
                dom_more = dom_more + 1;) G: f% G2 P) X( w
            end& c4 d6 d6 S. N& ?* m7 g9 a" V: N
        end
# e$ r& f! l, f/ |        if dom_less == 0 && dom_equal ~= M
8 @; y: r% [# _8 |            individual(i).n = individual(i).n + 1;7 ]4 I/ ]. L5 d: p( y
        elseif dom_more == 0 && dom_equal ~= M
- a6 k3 h- Y" P6 J) b" E$ ^            individual(i).p = [individual(i).p j];/ {# ]  |9 h( N) Q5 z: @, A
        end6 f2 I! z: U' V1 ?, w$ I' p: M
    end   7 t) ]8 U: ^) ]* B4 @& U
    if individual(i).n == 0- n9 v8 h" L" q$ S  E* o
        x(i,M + V + 1) = 1;
$ S% G2 C, b  E8 J% T( r        F(front).f = [F(front).f i];- Z$ [; C. i4 h3 C
    end3 D4 W% e5 G7 p2 b( ]
end
1 {( r: M- g5 [+ }
, a% l# g) J5 l( }' h- ~( ?while ~isempty(F(front).f), z& s6 i$ h. d$ f; C
   Q = [];$ {2 x( L. U' Q& a" q
   for i = 1 : length(F(front).f)- \4 z: x) g: F4 s* e7 J* G
       if ~isempty(individual(F(front).f(i)).p)( _, M! U( ^& Z$ u" x. ?5 ^
            for j = 1 : length(individual(F(front).f(i)).p)1 Q1 Z% R1 w( w% \& I/ m
                individual(individual(F(front).f(i)).p(j)).n = ...
& W; H. s( o+ e9 o% Z  R: l, p! q                    individual(individual(F(front).f(i)).p(j)).n - 1;
: C: H6 m1 j8 b4 W                if individual(individual(F(front).f(i)).p(j)).n == 0
5 o: t: b3 q$ H7 F* z3 Q                    x(individual(F(front).f(i)).p(j),M + V + 1) = ..., U) q: W0 J" |
                        front + 1;
0 r$ R% c6 f# ]2 I& }                    Q = [Q individual(F(front).f(i)).p(j)];' w$ ?0 B3 P+ Q, N  F1 w+ n) h
                end2 r  C3 k- L% c+ `2 \- `3 `
            end4 j! h6 n2 y1 d0 s
       end
5 y1 [6 l# d: N  r) X: B   end7 g( h' P" Z2 i: o
   front =  front + 1;  o2 i2 y9 E0 [2 T
   F(front).f = Q;" N1 }/ C0 z  c0 n- N: ]
end% D2 X5 w% F) w3 S
$ I6 m: {* M- e: v' N6 A7 ?0 F
[temp,index_of_fronts] = sort(x(:,M + V + 1));
3 x0 K% t3 M6 M6 p& v  ofor i = 1 : length(index_of_fronts)9 B8 ^$ u8 y, P* l* \
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
: E* w' K& m' l- U, g. cend
2 T% Y& \3 [7 acurrent_index = 0;9 d6 _' k4 K$ h) m' U: L
0 l. J2 p% s& l4 i! Z$ u% J- X
%% Crowding distance& R! G0 I: s" e* J9 W( S& g7 i$ v

- @5 v. \- {! Z% b  B0 [+ Dfor front = 1 : (length(F) - 1)
; R, w+ p9 g  n$ S! o! w9 h/ X    distance = 0;
' N; k0 X( M7 R+ r  V1 Q& ?6 o( m    y = [];7 f3 Y5 }* J; ~9 v, p
    previous_index = current_index + 1;! g) }  x3 ?4 ]7 Y, `8 o9 S  N5 D
    for i = 1 : length(F(front).f)
" \  w) G, C' q: L) o0 n8 r, Q        y(i,:) = sorted_based_on_front(current_index + i,:);
+ S$ n3 Z5 T: }4 K9 ?. q1 c    end
+ d+ i) ~( @% K' i! m    current_index = current_index + i;' T, l* F7 A) f7 c2 q
    sorted_based_on_objective = [];7 r5 R5 H" W! u, h
    for i = 1 : M
0 \+ Z% a5 [% M- |' ~        [sorted_based_on_objective, index_of_objectives] = ...8 A6 }* O$ L% o! k# z+ X: J& ?
            sort(y(:,V + i));
% ^% Y* t( f8 {8 w& b  m        sorted_based_on_objective = [];
9 ^, _6 W! u! o        for j = 1 : length(index_of_objectives)- t$ p: E+ ^: [6 u
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);4 D  A5 V! k7 v; @. g6 b8 r9 f8 q
        end
* B# I9 t7 @5 \8 z; B4 ]; }        f_max = ...
6 [2 v: _4 H& f* s: F! f            sorted_based_on_objective(length(index_of_objectives), V + i);* \$ y9 z; C% O1 k) H# Z
        f_min = sorted_based_on_objective(1, V + i);
- ^6 W1 a  o# s0 ~( t        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...2 }; A9 K  m$ v% \7 G
            = Inf;  j3 Z5 l  e* i) \# V9 I
        y(index_of_objectives(1),M + V + 1 + i) = Inf;" X1 |+ W; X. R$ m) u: j) N
         for j = 2 : length(index_of_objectives) - 1- f2 {1 @" ~% i+ H/ S
            next_obj  = sorted_based_on_objective(j + 1,V + i);! ~. N5 ^" k) P4 P& k, M3 h" c8 i+ D9 t
            previous_obj  = sorted_based_on_objective(j - 1,V + i);& {0 D2 ^- C# Z, U! V3 J
            if (f_max - f_min == 0)0 _; x5 ~* ?( G- x) Q& D1 {7 M
                y(index_of_objectives(j),M + V + 1 + i) = Inf;
; ]$ I1 {+ @- ?0 R6 q- m, G2 k; u            else& K7 S4 y/ T4 W
                y(index_of_objectives(j),M + V + 1 + i) = ...8 n$ ]; q- k# P. V. l4 E/ D  x
                     (next_obj - previous_obj)/(f_max - f_min);
" {0 B0 Z# q4 D4 g            end
9 q$ X' K; V4 |- W& l- s/ K6 A6 p         end
) l% B1 L. ~9 y1 e) r    end
. U4 ~" [% l" I# s) v    distance = [];6 r0 U: n4 U$ N2 a" `3 x
    distance(:,1) = zeros(length(F(front).f),1);
. d& H, L9 X9 }# I/ }7 x    for i = 1 : M
5 ^+ s8 S) `4 z# C7 m        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
* H4 O, ^. M: |. `    end
" j$ q0 e6 a' Q, D; G- l' G    y(:,M + V + 2) = distance;- t$ \! M5 q: B8 o# I$ I
    y = y(:,1 : M + V + 2);
! H3 ]5 `; b# m* x8 ^    z(previous_index:current_index,:) = y;3 j' `! M% R9 V2 Q% @
end
/ _+ J9 ]1 t" l# vf = z();; ]+ `, X. j5 T" J4 {: x
9 {, |* e9 `0 C6 Z) |2 y

# \; @) c+ u, V/ M5 h3 C7 E④tournament_selection.m
/ [! ]( ~. H; |
1 R  T6 o& u8 |/ H% |; {function f = tournament_selection(chromosome, pool_size, tour_size)
/ r- y% p5 X/ K! [  k[pop, variables] = size(chromosome);
# K+ }! e) a% @& f+ x# Krank = variables - 1;
' U# t3 |. O6 n! @0 ~) edistance = variables;
' o6 M; i0 u8 M9 q& k8 N, tfor i = 1 : pool_size0 X0 \" C% B6 s* _+ |
    for j = 1 : tour_size
4 x+ ^, W0 d1 K! P; L        candidate(j) = round(pop*rand(1));
. b; n$ ?; W# w5 S) M# X+ a        if candidate(j) == 0
$ N0 V9 @$ P: e8 O$ i$ [            candidate(j) = 1;3 S/ ?8 p/ s+ _- a
        end
+ E3 m# X4 W2 H6 ^: b) w        if j > 1+ N  x( V) v4 ?, C( a3 G
            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
+ ~! B6 s3 C- c  u# p                candidate(j) = round(pop*rand(1));. [: Q( R2 O& m4 m+ q
                if candidate(j) == 09 y5 y  U! E0 T3 Z4 I
                    candidate(j) = 1;- l8 a$ `. d1 ]
                end
! A+ P% x" O; R: V$ ~* o            end# I8 F# y% k5 Q
        end
9 Z* P- n# h/ q* L9 m$ Z' j5 g8 i    end. u, l% l  N6 {2 {- P4 @- {
    for j = 1 : tour_size
% R2 u, J- A7 }3 h  I* T        c_obj_rank(j) = chromosome(candidate(j),rank);8 x! Z, a9 [3 n" ~# n- p5 @# U1 e$ X
        c_obj_distance(j) = chromosome(candidate(j),distance);  V/ X+ a7 ?( i9 M1 K
    end4 L) i3 `9 a" K0 S& z0 h2 J
    min_candidate = .../ R& g9 z: r1 I" l# T- s
        find(c_obj_rank == min(c_obj_rank));
! n( a3 ~, [4 `. D! r    if length(min_candidate) ~= 1
& v0 @, r2 H2 z; I( G) A        max_candidate = ...
, w" J8 p; Z8 @; ~8 u) a        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));6 C4 v+ y- \" R3 f9 L' ]8 ~
        if length(max_candidate) ~= 1# l) q' e' S, H$ }* }8 f: {% X7 H
            max_candidate = max_candidate(1);
. h0 f2 i; l5 s# t7 y- }! @        end
; _# j  r7 N$ o. i  }( [        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);: g1 \+ F) n! s$ F( e0 K
    else
; l4 L- v5 U8 t% a0 k        f(i,:) = chromosome(candidate(min_candidate(1)),:);
7 H3 k1 q. h5 p% |6 n5 ]    end0 z( B" A6 R- j, a5 `! C
end
$ ^5 V' a0 A) b$ v! i. y. `; @' R% @$ @3 J2 k
) u  {( K4 J: ^' k# m) v$ p
⑤genetic_operator.m" {. a! I* o& P4 n4 ~: k# L

& c/ e& q# b8 ffunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit). z9 @7 R6 e% S; v1 _" w4 n
[N,m] = size(parent_chromosome);
3 n. O& {1 _( Y. H) o0 [0 d/ ^$ D# V$ }  H, f) [& h+ a
clear m
9 g5 {% K& z1 op = 1;
6 d; |6 g2 Y# d' ]3 I( B9 V/ R( lwas_crossover = 0;
8 X1 x7 m, c: a# z4 G" V+ Pwas_mutation = 0;
: X8 j% G  J" H6 ]- J# w# s, q

6 h  K) s9 Y0 e1 G/ A/ A3 X9 vfor i = 1 : N1 f1 \( h! Y! D0 u7 H
    % With 90 % probability perform crossover
9 Y" r1 n/ `, s7 B6 d. p    if rand(1) < 0.9
: v" G0 j0 O- U$ F1 d4 D: c        % Initialize the children to be null vector.
  o6 `$ p6 n2 j; i        child_1 = [];
7 M7 V! W& O4 n2 S% B: z        child_2 = [];2 _6 q! V* e: K/ e) c( @9 U
        % Select the first parent7 S3 e+ C0 X$ D. X) O- a
        parent_1 = round(N*rand(1));
) i* I9 |8 h0 B) H# q, ^        if parent_1 < 1
) Y& u& ^( w8 \            parent_1 = 1;* q! F! q/ a4 p( }
        end  }/ H3 m6 ]3 D) c+ E, a4 I' M. w
        % Select the second parent  S6 w* q1 U: `. `3 q% @: h; e3 E$ Z. U" @
        parent_2 = round(N*rand(1));
: N( r) K- b# R7 r4 m, b        if parent_2 < 1( A# S/ i" }6 G. {$ i( `
            parent_2 = 1;' |3 [; y, K4 G) x) T% G
        end' T. w- C' t0 q
        % Make sure both the parents are not the same.
& W% @  F9 r1 P% {7 f        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
/ ?& i) S9 g5 O2 M  u; Q6 M2 O2 p            parent_2 = round(N*rand(1));. _9 y* b0 b; H( h8 B) E, ^  q
            if parent_2 < 1; e( K; Z2 b1 v  S
                parent_2 = 1;
5 m# Y4 n  d4 N: F9 ]            end2 M& R/ n9 I- `2 f# k
        end
7 h4 p( f  x" u' ]        % Get the chromosome information for each randomnly selected
& B  z1 ~) Q' S7 Q: I2 d0 R& n/ t        % parents8 F: H+ t% _& o: w. H" Z2 m
        parent_1 = parent_chromosome(parent_1,:);  V2 `+ b4 t5 L- @% m- x
        parent_2 = parent_chromosome(parent_2,:);9 _% S: I5 D6 n1 F  O9 D8 s, P
        % Perform corssover for each decision variable in the chromosome.
* X% Q  d( T$ R. ]- s0 @        for j = 1 : V
& K/ S* o7 d; e  z) @            % SBX (Simulated Binary Crossover).# n9 L! x& U$ A
            % For more information about SBX refer the enclosed pdf file.
- m% c; c" V  g1 V            % Generate a random number6 m# F* S% [+ t) R, b( T, O
            u(j) = rand(1);7 g% c' f  @7 Z/ I1 S
            if u(j) <= 0.5
5 i2 j3 }4 k; w, s9 z! E. ?' Z% `                bq(j) = (2*u(j))^(1/(mu+1));
7 j5 t; U3 F1 ~* u            else- k+ p- O) V, l2 B4 l
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
3 X% E1 D" R/ Y3 l0 @: u9 a9 C& ^6 J            end9 n; L8 b4 n- r; K& y& K. j
            % Generate the jth element of first child; J8 N9 ~4 P# ^  D1 w& T- ~) y" ~
            child_1(j) = ...8 U$ e  ^# n. Q4 x' u/ f6 M. S
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));& m. W3 t+ |% m! N
            % Generate the jth element of second child
5 y4 G  U' l8 a0 n5 f1 W( o            child_2(j) = ...- B  M7 G4 y% E7 y
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));6 W  b7 ~4 i8 e* w7 e
            % Make sure that the generated element is within the specified1 u% w" i. @) L- Q  @+ {
            % decision space else set it to the appropriate extrema.9 w, m) {1 y6 ?7 J
            if child_1(j) > u_limit(j)" g" m& A  Z7 _1 r8 j" J
                child_1(j) = u_limit(j);0 k; n8 K8 ^+ ^( _* ~
            elseif child_1(j) < l_limit(j)6 s+ C, h; w2 v$ M/ Z) k- D( m
                child_1(j) = l_limit(j);3 c( Z$ u; d+ t* z# Z
            end2 k! A1 z/ J' _# c3 f4 _8 d: M
            if child_2(j) > u_limit(j); v) h7 {8 m3 G3 t  |5 d! M* ~
                child_2(j) = u_limit(j);
3 t2 o! ?0 {) A, j9 O) O& Y            elseif child_2(j) < l_limit(j)
- G' Q# N+ O6 i) Z  c                child_2(j) = l_limit(j);
& v3 i5 @' R* @  _            end9 h' }3 J. c4 p) _$ @' `: V
        end; M2 h$ s/ ^) F" ]' u* S
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);8 O+ Q& D* t5 a  K
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
2 U1 x, n: a7 b0 ~" D2 g0 u2 ?        was_crossover = 1;. O; X. {0 p  f( w6 v1 _5 c
        was_mutation = 0;6 D' U7 c' P% z+ P$ s
    % With 10 % probability perform mutation. Mutation is based on; x1 [9 {( ?6 y& w" t; M8 H4 |
    % polynomial mutation.
" b8 k7 G" P" Q+ a    else
0 y" i; k* r* A( @. W* ?+ t        % Select at random the parent.5 ^3 A7 U. u( w2 ~, k. J0 F" T
        parent_3 = round(N*rand(1));1 l% Y) r3 [9 t$ m( X& R
        if parent_3 < 1) o! f9 r8 x0 n
            parent_3 = 1;5 D# D2 ]1 M9 F3 o" ~
        end
! W; _% n) V/ a, L        % Get the chromosome information for the randomnly selected parent.
8 ~4 y4 t/ _, c. p1 b        child_3 = parent_chromosome(parent_3,:);0 y1 a+ E  r# J9 p- w' h
        % Perform mutation on eact element of the selected parent.
* x; _5 A, J: K        for j = 1 : V6 b1 I* o: ?' C# V  z' v
           r(j) = rand(1);
" s  S: i! j+ e6 \* V) _# B           if r(j) < 0.56 s) M$ c) Z; {  t; G" K& B
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;6 v# z" r1 Y, E' p
           else
# i; F; v0 o- z, Q! s- B               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
' o5 ^7 L0 y7 b' E           end& l! I7 x9 R2 J3 ^3 G& J
           % Generate the corresponding child element.9 W0 }! H8 ]. r3 c% p- y( X/ O
           child_3(j) = child_3(j) + delta(j);
* H) m9 g  ^3 g. W( }( K: S& S7 r           % Make sure that the generated element is within the decision- v; i9 I: X5 M* s& n8 k6 o
           % space.
8 n, L4 |; z. N1 i- c           if child_3(j) > u_limit(j)1 q$ s  H# M$ R+ P
               child_3(j) = u_limit(j);4 ^7 N- B' i1 M
           elseif child_3(j) < l_limit(j)7 `( l. u0 E% N
               child_3(j) = l_limit(j);2 c' {0 b9 P) ~  `2 t+ z' @
           end% G" u' i% @# m) Q. a
        end- u, g% _* ]2 y- J0 l# S9 h
        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
! B$ ]; q2 s0 U. t( ~& ]        % Set the mutation flag. Z& d7 \, [: s3 V) P
        was_mutation = 1;
$ ?1 U  Z* E' ?        was_crossover = 0;
4 l0 S) u3 p/ t& v& P+ ^    end! y. t+ N* c0 z0 G0 L
    if was_crossover
( i; W8 i% _$ y2 ~# P1 ^+ s( ]2 s        child(p,:) = child_1;0 l- U, L+ C# V7 @: K4 d  _
        child(p+1,:) = child_2;
- w( O! f9 F7 ]% t2 q3 T, m' e        was_cossover = 0;
& d; l" C4 |+ A3 o- G& g& M9 C        p = p + 2;. j7 h1 L' n5 c+ l, x9 C
    elseif was_mutation
# f7 i7 _+ o+ `& j8 l* n        child(p,:) = child_3(1,1 : M + V);0 y( T- @& Y1 t% n
        was_mutation = 0;
0 _; O% e# ^) W  D; p        p = p + 1;- h& R8 o# {0 |- d' A# G8 c
    end/ b7 @( z  e  Q) I5 Y8 z  x; b
end
! w& H/ P5 I* t# ?f = child;. M, ^- g0 g# y: F: s; O

, M- C; s# X2 I' T4 K* e3 X1 Q  C3 \8 F- W" K
⑥replace_chromosome.m
* `6 k+ f( \7 Q; G- [. {; ~/ F7 T) `+ O, T+ r1 b* @) b* w( l
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)  M9 e% R: N( s5 T# u
; V/ x  r4 P& C  y; W$ ^
4 z0 C2 Z1 {% k* T$ Z# `
[N, m] = size(intermediate_chromosome);
# {* l- E. H& H( V& h
3 j+ m+ r- r' h$ D1 H9 w. K% Get the index for the population sort based on the rank
$ @( V1 G5 B' U+ A$ P( ?[temp,index] = sort(intermediate_chromosome(:,M + V + 1));! o, }+ P% N4 A* ^4 n. U( G5 m) E
$ g, W! W& H2 v& H6 _7 j. s, ?
clear temp m- ]9 e& ?2 B8 x. X6 s. V. h! m

9 O7 i3 M+ U5 A) K5 x8 E' c" N% Now sort the individuals based on the index
: q! ~8 p, v7 y' efor i = 1 : N
- O% T  l5 E0 p5 @  T9 x    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);+ u7 o/ }* L9 o. u; M
end4 R0 ]2 J& g, x% G

0 n4 S0 Z2 j! M  s" `% Find the maximum rank in the current population) l: @; q) L: D: X5 P+ d
max_rank = max(intermediate_chromosome(:,M + V + 1));+ V7 x& U  d! H  F2 R3 F

2 L: P+ ?4 E" p4 U% Start adding each front based on rank and crowing distance until the. q) A0 y/ _" C8 s3 D6 }/ O. {
% whole population is filled.
  n4 M4 `- R2 s; fprevious_index = 0;- u. n( z( g; L0 D5 X6 }2 R- b
for i = 1 : max_rank/ n" v# o- j$ p7 U' n( m7 f
    % Get the index for current rank i.e the last the last element in the; }: P2 p( i0 G
    % sorted_chromosome with rank i.
7 ^8 s! i* `' D7 [. t    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
! K6 G; K1 Z* c7 H8 ?    % Check to see if the population is filled if all the individuals with
" u: n* S  G% |- ]5 R) B    % rank i is added to the population.
0 B8 r- _: e7 J- R, y  Z4 P5 v    if current_index > pop% K% L  k: Q% M/ \  V
        % If so then find the number of individuals with in with current+ Z% B# P7 g' r: v! j. G
        % rank i.
5 S* e+ r* D5 W( r        remaining = pop - previous_index;& ~, i% [- I& `6 @
        % Get information about the individuals in the current rank i.
) V- z) e+ B2 N" O        temp_pop = ...% [$ k: @& {+ m3 ~
            sorted_chromosome(previous_index + 1 : current_index, :);: F2 P( c  t1 {7 o1 |
        % Sort the individuals with rank i in the descending order based on7 P2 a% o$ \; i; }" q/ P" U
        % the crowding distance./ O$ C* ~) d" ~$ d0 ~) h; t4 j
        [temp_sort,temp_sort_index] = ...
) C8 B: c! J8 C$ Y. w- j            sort(temp_pop(:, M + V + 2),'descend');4 _- r% T% _5 D
        % Start filling individuals into the population in descending order
# D% B2 Y0 Y8 D6 @* E- q        % until the population is filled.# F/ ]% }; P! H' m, Y
        for j = 1 : remaining$ q) D; W% \* U
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
% K  n5 j) g( f* e4 A, I1 W3 C" x* ?        end0 E8 L) S  `5 m) D2 D
        return;# Q' C7 X7 f$ @+ c
    elseif current_index < pop
9 j2 X8 K% m' T( J* l        % Add all the individuals with rank i into the population.
! K* J5 ^3 O9 Z6 N9 Z# I        f(previous_index + 1 : current_index, :) = ...3 E" O1 G! Y3 T1 D2 Z
            sorted_chromosome(previous_index + 1 : current_index, :);9 V4 i+ m5 z" Q/ a/ {
    else
% f# q: J3 ]8 S( ]        % Add all the individuals with rank i into the population.
! L# b; @5 Z5 K        f(previous_index + 1 : current_index, :) = ...
+ j! C/ Q/ b3 Z" J$ _            sorted_chromosome(previous_index + 1 : current_index, :);
; T! Y# ]) f, X8 O        return;6 w' F+ n, G9 b
    end
7 t$ e7 t" U0 U  n6 J, K4 q: Y    % Get the index for the last added individual.& f* M* j/ f: {0 R7 V4 ^4 y
    previous_index = current_index;
% j+ _- T9 o8 G" j; ]' Gend
: P$ F$ o+ N3 a; a8 v7 t( V7 l( v8 W% g7 i9 ~

1 P" p: ?0 r- A3 w' o: h⑦自定义评价函数(我选用的ZDT1函数)! g* @' c# }5 a' p) q" S  P4 J4 ?

# b1 Y, [2 Q; B/ n- Ifunction f = evaluate_objective(x, M, V)
* R0 \' u. @3 k! f  Z( qf = [];  _3 j1 t, E3 a: n& R3 e/ O! N
f(1) = x(1);6 L- \8 f2 `) l( x; \
g = 1;' T/ H. k  x( }7 f) Q/ ~9 e* Q
sum = 0;
9 k; t- _) K5 S% J2 T0 a8 X6 rfor i = 1:V* W" q. O$ k; x7 p
    sum = sum + x(i);
! f, P: s0 c2 ]9 J5 x( Bend
- G: r& a' o" l7 r2 I5 M1 s+ h$ }sum = sum + 9*(sum / (V-1));
+ d* g' B" @, R, u$ ^) }g = g + sum;4 \- s4 c" B  a. p
f(2) = g * (1 - sqrt(x(1) / g));
% a3 @: m) m7 I" N/ }end
" j* K* v' |4 `2 Y# H
$ N4 \1 R* T! o; g$ g7 ^# z8 }5 i. l6 c" H% c
500个种群运行500代的结果: # q/ [( W5 S5 p  z+ N% P5 e, t
$ d7 P1 n3 b7 e3 t/ ?* u$ E
) T  {- Z7 E: Z

2 F7 N6 B( @) B( X2 m
- e% Y# c8 O  ~9 H: X1 m0 }
6 i8 c7 d# ~1 |6 g* ^1 Y8 ~  e: _9 g  h( i& h

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 04:28 , Processed in 0.187500 second(s), 27 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表