|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
4 i7 x b$ j+ m) `5 b" U
6 c% t+ c. v X6 y& e. |- i' X9 y( p8 C' F1 P
NSGA2的过程为:1 }" D9 n4 C8 I5 B; U
6 `" _. Y# E$ R& y& }' l1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
( _* t9 `, l# C$ d! I! o$ f3 x7 L0 j6 S# _1 R3 P
2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
5 `: u1 E) H0 \; D5 [( e# ]
. p" x0 g6 f3 }' h3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
' M: @) ^5 a' P) J1 M% r j2 R7 `# ^7 A, p" q. o6 e
下面是完整版的代码:4 E3 d; Q6 d# [/ L
% N! w1 S: u5 k" P; |7 f" F/ t4 A
①nsga2-optimization.m; R: K1 }) H, p u! h R$ h9 X0 t- x
. y \- c! A! t; B, i) [. dfunction nsga_2_optimization8 p8 v2 }% z r( B8 G" R
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- J9 a s1 f2 C! X5 m1 H- j%此处可以更改
" P/ G) ?; c- `# F9 I%更多机器学习内容请访问omegaxyz.com
' D/ h1 b5 K/ Z6 w9 w6 a9 Gpop = 500; %种群数量
& p! Y( R% J3 k: b. S* G2 rgen = 500; %迭代次数1 ^; x1 J8 Z1 A5 N
M = 2; %目标数量. w m# y& h3 a+ [
V = 30; %维度
! r% x6 v6 ^" Y" s7 H& ?. }' c8 h$ m. Hmin_range = zeros(1, V); %下界8 A0 y% B; e6 F% T& `3 j
max_range = ones(1,V); %上界( ^- t! a& V) T0 G; a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%* Q" i, h6 F3 T k) W2 a
chromosome = initialize_variables(pop, M, V, min_range, max_range);+ T7 E% I/ ]7 ?. S
chromosome = non_domination_sort_mod(chromosome, M, V);
- P( B* n' {. \8 k# I4 k
" k% ?2 e3 f L* v, T- e3 L. zfor i = 1 : gen
3 D) I4 L; G# }' {' K' N% p pool = round(pop/2);' w( j; Q' a5 v- e8 M+ d2 {+ h+ E
tour = 2;
8 b u& T4 I4 m) B* p/ K" n I parent_chromosome = tournament_selection(chromosome, pool, tour);& `" `2 u; s) B, l; |$ t& b& I) h' r
mu = 20;
, h' }- ^! J, ?) H mum = 20;
1 q, E) D0 D8 N: L4 i2 r offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
2 m+ d$ ]5 W( E2 n+ d [main_pop,~] = size(chromosome);! W4 M X# ?3 e# [6 a8 r4 m" |
[offspring_pop,~] = size(offspring_chromosome);
4 Z3 ~2 [+ F2 @7 E. J; [ clear temp# L$ N) l# ?; r9 S
intermediate_chromosome(1:main_pop,:) = chromosome;1 l) H: q6 T# R) B& Q8 s8 B) b1 _7 V
intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;9 ~8 Z; ?/ X" x% l: O
intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
( O$ L7 h+ B4 _- J chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
# }6 e, R( p$ g Y1 b if ~mod(i,100)
2 y9 a" j. e+ t- f! ?' [ clc;+ M) h/ u+ ^6 P1 h+ `* Z
fprintf('%d generations completed\n',i);6 y6 ~+ g2 W- k& o! S
end
8 s4 s7 J/ S2 x) P( S1 }end
) Z9 C: }3 b) @
# S9 I; V h% Q9 |1 y' m0 iif M == 2
% }& B* |. t* c/ {% L plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
# {4 ~. o* S7 x3 S xlabel('f_1'); ylabel('f_2');. c9 s4 j! C8 ` ]5 q# `8 F
title('Pareto Optimal Front');
3 a8 x0 H$ X0 g9 ~: S( pelseif M == 3
7 u0 n$ W4 V; ~1 A4 V0 [ plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
( C. F! ~+ D6 r3 `; w4 Q) i4 L xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
5 K7 b/ o# {- t) k, ^$ | title('Pareto Optimal SuRFace');4 |; x5 u" _* ^2 R5 |& F3 f
end' L, d2 W8 T9 V1 M" x
3 {$ O9 a: }# R6 [5 p& M) y# z; H* a0 I! k% O- V+ ~% I7 m( L
②initialize_variables.m: F) [% [$ @3 {+ a3 s
* s6 O4 r" k3 u
function f = initialize_variables(N, M, V, min_range, max_range)% C( s) a0 S$ v; O$ A1 S `$ o
min = min_range;" D% u4 L3 I( T3 N$ w6 T
max = max_range;
* ~: u! m7 ?3 m5 X; ZK = M + V;4 V$ q2 w0 o* x0 L \* q1 b
for i = 1 : N0 o9 W2 W# E6 B% l0 `7 P! B/ ]
for j = 1 : V7 {+ x" ~& X$ w$ o5 L
f(i,j) = min(j) + (max(j) - min(j))*rand(1);
4 V8 A: i+ k2 H1 N7 E" o. S' G end
% |6 a. `6 T$ q+ H f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);' \3 W% R' i4 Z0 g* V. O
end
9 \% h' j' ]: ]: o0 O
+ k7 {6 ]) ^' t! q! ]& u8 U
M6 g8 x2 W6 Z; Y4 P. O③non_domination_sort_mod.m1 O; f( U2 K1 s9 h- F5 g w( O
) ?0 x( |6 m, n5 d2 [3 b* efunction f = non_domination_sort_mod(x, M, V)
% A' D, e9 A8 C* N[N, ~] = size(x);
3 O: V* Y1 @0 h; |* h* l" N8 @clear m
$ A; X7 f/ N, R/ ^( v) p. H2 _front = 1;2 ^3 Q/ Z9 k6 v0 J
F(front).f = [];
& V$ f( b+ J% T/ I% dindividual = [];
! \& A$ S/ R1 j4 c2 W1 W& z1 i" @* {, D4 e$ m c3 }
for i = 1 : N7 Q1 Q( C! k9 H( I5 B4 f3 ?3 q* C
individual(i).n = 0;
' A1 W7 v" U& S$ H6 }8 p+ t individual(i).p = []; t1 ]/ L" T6 J2 g. V
for j = 1 : N
1 v- w) v- D* k$ a# Q& W- M dom_less = 0; d# D! X( W5 d$ D3 q7 i+ E
dom_equal = 0;& v! E3 f7 m) U9 d/ B
dom_more = 0;5 K& U5 t% u& ?0 w; q+ R# [4 D
for k = 1 : M
, K4 ~; v; |8 Z% ^3 P5 l8 y if (x(i,V + k) < x(j,V + k))3 K/ m" p6 @9 L
dom_less = dom_less + 1;
4 \8 W( f0 U+ b. C5 X# V elseif (x(i,V + k) == x(j,V + k))' A* ~& X5 l$ g9 a# G" Z# ]% {
dom_equal = dom_equal + 1;' l6 I8 ]6 y7 o. G% m% l# H
else
8 B0 L! B" Z* Q0 k dom_more = dom_more + 1;1 O0 x; w- d q$ j" Z% F7 D
end1 |; T; ~0 ~+ a5 W# `7 X0 ~) E
end
4 e8 ~2 X; \3 q i* g- L, S- S: U, { if dom_less == 0 && dom_equal ~= M# g) z7 }* A8 s2 q
individual(i).n = individual(i).n + 1;& k2 r/ z- ~" F5 z
elseif dom_more == 0 && dom_equal ~= M
( L5 G& d7 O I, Q/ X% {: C5 D individual(i).p = [individual(i).p j];
; M3 b5 I9 T7 l2 b5 Q- X! S end7 @' {4 G% V2 r7 R7 s) K
end
* E4 J& B, D+ e! F/ t6 d if individual(i).n == 0, Z" l, t! j$ N- ^2 Z" g' E
x(i,M + V + 1) = 1;
9 P* T; r0 p7 d D% x+ E& v) ~7 E* ^ F(front).f = [F(front).f i];
7 @! X8 }) X! Y% i |% T end
% [' `' O( {" V& V1 Eend/ ?1 h* `7 |9 Z) G% @* S) a. {
: h, W( T8 i: _while ~isempty(F(front).f)
, ^* Z$ M7 v5 b# A' N Q = [];
0 {/ m" N6 ] e) A for i = 1 : length(F(front).f)
0 a' a# A4 G8 j9 q- Y1 n if ~isempty(individual(F(front).f(i)).p)
7 G* I* U) T' Y. A6 d& C5 V5 F* t3 l for j = 1 : length(individual(F(front).f(i)).p)
1 Y4 c, N" R4 S3 z+ k. b; ?% e$ ] individual(individual(F(front).f(i)).p(j)).n = ...
- {0 ^$ |6 S6 {+ y* N# o( D individual(individual(F(front).f(i)).p(j)).n - 1;2 X1 B0 y3 w) T7 h4 T: w
if individual(individual(F(front).f(i)).p(j)).n == 0
0 Z4 T7 n5 Z( c" R3 v' J. U x(individual(F(front).f(i)).p(j),M + V + 1) = .../ V! w" o/ o9 ^8 U3 a7 J9 h, ~
front + 1;
' j: k5 t& v& W% B, g Q = [Q individual(F(front).f(i)).p(j)];) P- r8 N2 L& \ e& t
end9 k8 Z2 K5 @' y
end
% Y( \+ b6 j( d- P8 w4 s end
v& ^# ^' o1 N* s/ r end
1 p% i7 y8 p l; l) H, D7 b( { front = front + 1;
/ V$ ?( R5 E8 d+ h+ Q: \7 H7 Z# j F(front).f = Q;
7 H( G' j; ?; N! k7 s8 ~! {end
/ J( z' G, Y" e+ x5 z
( R6 b2 i( h" @1 j( k[temp,index_of_fronts] = sort(x(:,M + V + 1));* |+ r. o% }# I! ^1 T+ A
for i = 1 : length(index_of_fronts); x7 B8 B& n* L1 K
sorted_based_on_front(i,:) = x(index_of_fronts(i),:);/ F1 o4 y8 a* U4 g s5 u
end
% e7 i7 i- G" g( a& V. dcurrent_index = 0;
4 H" D/ p3 d8 F7 Z
8 I. H. q, R1 y%% Crowding distance
. q" m2 I# r( Y' S% g, @3 V; `
for front = 1 : (length(F) - 1)5 m: d8 E, t; o0 f: I
distance = 0;3 i" i. j5 X2 b* e; }
y = [];. s* N! k/ J2 Z2 V. X# W; `
previous_index = current_index + 1;
; K5 i- J) t3 Y for i = 1 : length(F(front).f)
% P0 @; f J% Q. O9 c y(i,:) = sorted_based_on_front(current_index + i,:);8 K" ]/ @& v# i8 A$ [ D
end
0 ^! b0 ^# M) E) b! N4 Q6 [( z+ Y current_index = current_index + i;
5 M8 D1 c' \1 w* P# @ sorted_based_on_objective = [];
6 @. C$ S0 ~* s5 a# ~6 V c1 j for i = 1 : M1 C# G% G& \( \7 z# G
[sorted_based_on_objective, index_of_objectives] = ...% T' Q- z# M& Z7 y* b6 L9 b) k
sort(y(:,V + i));7 h" f3 @8 _+ K7 n: X# W
sorted_based_on_objective = [];- L3 b4 _) N/ _6 `+ z
for j = 1 : length(index_of_objectives)) p1 s' [. D8 h8 _4 `
sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
a3 p! V" y) I# u8 R end8 f4 X0 y: ?" u" i- d+ L
f_max = ...
( U' s8 [3 D) ^) y3 u& I sorted_based_on_objective(length(index_of_objectives), V + i);
$ E# s% \" c4 J- w f_min = sorted_based_on_objective(1, V + i);
1 @2 a6 K6 N- i7 f$ b y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
) L) _% G* _/ q) O2 ?/ m N = Inf;
9 e: k# N$ [. ]1 a6 ^ y(index_of_objectives(1),M + V + 1 + i) = Inf;: r; `% O/ m0 Z" ]) C
for j = 2 : length(index_of_objectives) - 1
6 `# R4 U2 G% x3 T' k: k next_obj = sorted_based_on_objective(j + 1,V + i);
- X; c! ~/ y- ]* e3 t. M, K previous_obj = sorted_based_on_objective(j - 1,V + i);9 J4 H! G6 N$ Z; a
if (f_max - f_min == 0)
i' u, }! z& e# y7 r/ I9 t6 A! d( Q. x y(index_of_objectives(j),M + V + 1 + i) = Inf;
! l; ^" P. r' i else
, s9 ?7 r6 T2 W9 C" w y(index_of_objectives(j),M + V + 1 + i) = ..., W) Y3 X/ j2 R
(next_obj - previous_obj)/(f_max - f_min);
6 w: {4 n8 {/ `6 [# K8 x end. p3 Z# [# x- b7 a! c4 P
end* T8 a" J- z- M) E
end' e$ [1 m! p3 j$ j+ n4 M4 O
distance = [];
& s9 f) F" Y7 P7 y distance(:,1) = zeros(length(F(front).f),1);
/ F1 d k8 |8 ?9 p for i = 1 : M
- G' {! j; X2 y4 l! h" Y distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
' |3 s0 }1 y/ {3 f6 C end' Q' {9 n: _( V- Q# p
y(:,M + V + 2) = distance;
* d* g7 r0 c( T y = y(:,1 : M + V + 2);
% s* U% ` ]( Y8 r# Q z(previous_index:current_index,:) = y;
4 b: {3 b" e5 U: B% R! Kend
j# k5 Z. |2 e+ uf = z();5 X% T1 n! Y; J4 g+ z; g' m
: \' K, ]( ?: s8 K
' P8 T8 `, `# z" D④tournament_selection.m
5 e, Q& {$ ^, Z' w" x- U% B( m( j, X5 v- Z8 }
function f = tournament_selection(chromosome, pool_size, tour_size)3 U2 i3 l2 H) j/ q
[pop, variables] = size(chromosome);2 p; f a m* z' v3 T; k
rank = variables - 1;
! K& O4 |- s- k+ z5 r$ S, _distance = variables;
& I& N% a* [4 t t0 v% ^' [for i = 1 : pool_size
2 N- E$ j: s& R7 z for j = 1 : tour_size
" ^: x( e4 `' J! M) r candidate(j) = round(pop*rand(1));5 y6 K2 m( x1 E- _# c" |
if candidate(j) == 0 [9 p- V$ [2 M
candidate(j) = 1;4 R" h! a; G( U0 b+ @& e# h
end4 m5 F! M( M5 e0 @+ y
if j > 1 B; o& q$ a8 j6 ?. v
while ~isempty(find(candidate(1 : j - 1) == candidate(j)))# `3 X/ g* ^! w# t3 t6 ~$ ^8 q6 K
candidate(j) = round(pop*rand(1));! i9 p6 Y2 H( j7 O, c+ [6 b7 B( J
if candidate(j) == 0/ W& Z: E. E) b5 T6 ]( e
candidate(j) = 1;4 p: x- S. ^5 R* u3 V1 N$ n" c
end5 Y7 y3 G+ W* C8 `$ a0 R
end9 F# c8 Z6 V/ A* ]3 c" X
end$ o* G: z& _/ c& g3 H; v
end" P' e6 [: u3 V3 a2 h7 V2 Z
for j = 1 : tour_size/ [3 ?6 k( Y; i7 p% }8 c
c_obj_rank(j) = chromosome(candidate(j),rank);
0 }" ]( q1 Q& \! ]+ U% n/ R0 T: a c_obj_distance(j) = chromosome(candidate(j),distance);- ^( I( O& s2 v# z. I, p4 `4 ]; R6 p
end* @2 t. g5 f9 p! T- R
min_candidate = ...7 Q; ~& I& r0 q9 B) D
find(c_obj_rank == min(c_obj_rank));8 F) |# d# Y! b4 |+ k# u; q. Y
if length(min_candidate) ~= 1
" E A( R2 q" L% Q: y max_candidate = ...4 N3 K4 f% q' g' B6 ]
find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
- y7 S; ]4 D( O/ L' J& s* Q if length(max_candidate) ~= 1, Z( Z$ S' a6 [% ]
max_candidate = max_candidate(1);
8 z8 f. I% f% `9 d end
. g6 s' H# ?$ d f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);. A4 W& d. o# P1 V, k( }
else
& g, [4 j1 X2 L# ~+ p7 x6 k' S f(i,:) = chromosome(candidate(min_candidate(1)),:);; X6 k$ \, C0 K* H1 L% C1 I7 }
end
/ r/ g, L# X5 N- Jend
7 L* _4 B/ ^! y5 ~( d: m1 t# l' S* X1 ] V t/ @
, a5 m6 [) D' e. c# W0 }! C% k⑤genetic_operator.m
( w# T, }0 }# e$ t# {. O+ V% V% @' b( Q7 |( ?1 Q
function f = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)5 R9 n4 E p' _, ]& T0 L3 C; w
[N,m] = size(parent_chromosome);5 ]' c5 h3 P0 w: q
3 J! \1 \ F+ p# B+ T, Hclear m
) y+ s" ^& m) ?+ C2 @p = 1;1 }% i$ \/ S- D3 m% w
was_crossover = 0;
+ B: x9 d" W2 wwas_mutation = 0;
" L& P3 G; ~$ _+ N' j: n/ y$ e6 P9 s& {" n! _( S1 b
( B& ^( I; h# g2 S% T) mfor i = 1 : N
: X6 t# s: z( I7 k9 z % With 90 % probability perform crossover- e) I! L; J2 |6 n; c
if rand(1) < 0.9( c$ A6 W4 e- }* ]* C; H. L" d$ G
% Initialize the children to be null vector.7 Y- S- e! A9 |# D4 D
child_1 = [];
6 c5 @1 p& E t7 T child_2 = [];
7 i N! p' ^) O0 z; }+ a % Select the first parent
2 u8 O- }$ T! y" ?4 \* a parent_1 = round(N*rand(1));9 p" L5 G; X) w5 \
if parent_1 < 11 g1 j2 i0 |( Y; t" v
parent_1 = 1;
, u$ a; D1 E1 V end5 ^9 Y5 e# r2 I5 n1 N* @
% Select the second parent6 a" R# M& \! R# g/ w9 E
parent_2 = round(N*rand(1));
: r4 S+ l9 W1 i' J' q7 e" l1 K if parent_2 < 1
9 J4 ?! K5 Q! P/ Z' z parent_2 = 1;
9 g, {. [2 w; B" u2 S! d end3 h0 G! G& B# N9 b. J' o9 E; L
% Make sure both the parents are not the same.
9 X2 l2 R5 u4 M ` while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
! z! t3 N8 w' b4 e+ ?# L$ p$ f% w parent_2 = round(N*rand(1));8 W1 \8 x4 h4 x8 H0 X
if parent_2 < 10 t# j. n" g( J& P/ n; X
parent_2 = 1;3 r5 ^5 P6 { q& @4 V- L
end
7 J( y( L2 z9 W5 J end
. b! u; c. c" [/ M0 r7 e % Get the chromosome information for each randomnly selected) N) M' k' \( A/ f, Z6 R+ E
% parents: s* A s; A# a4 D! z
parent_1 = parent_chromosome(parent_1,:);
; w% D) E" M& D* B' m% z6 S parent_2 = parent_chromosome(parent_2,:);4 p7 v" d. w+ D& x2 D) h, ^5 R
% Perform corssover for each decision variable in the chromosome.( E' B3 T1 k: H; F) W& U8 D
for j = 1 : V( [- k. M( l; B6 N$ r
% SBX (Simulated Binary Crossover).
- E3 @1 s1 V/ |" O % For more information about SBX refer the enclosed pdf file.: N- J' u, B# \# H; N, ]
% Generate a random number( q' Q7 t2 D7 T l b
u(j) = rand(1);' \4 B( W" G$ }
if u(j) <= 0.5
! e( W- @: w' f5 A) x3 v bq(j) = (2*u(j))^(1/(mu+1));3 ]0 O2 I" n6 @: x
else
1 l, U/ ? n" A( B bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
# i. u: l- i) ^; {# c end
( q: i* M; X: o1 Y5 z2 Z X % Generate the jth element of first child" R4 m, t+ S; k
child_1(j) = ...; A2 _* E' V- f$ E* B
0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
6 D+ a, y8 h) ~' S % Generate the jth element of second child% J: z# z/ |, H/ D' Y% v
child_2(j) = ...: U! i) `: ?. z1 f: b- W6 Z- n
0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j)); ~' B; q; T9 q, e' d9 y
% Make sure that the generated element is within the specified# r0 ~( [% M: k( a+ E% q3 `* l3 j* }
% decision space else set it to the appropriate extrema.
5 x: {8 ?5 `8 x% ]8 p) T if child_1(j) > u_limit(j)
: n9 F6 P; _, w child_1(j) = u_limit(j);$ d. e* X3 B0 s i
elseif child_1(j) < l_limit(j)! k6 ~0 `/ m, ^0 l
child_1(j) = l_limit(j);! ~" ^( ]7 x: N6 g) C- R
end" l9 `$ p: N% ~
if child_2(j) > u_limit(j)
; j6 ?( D. q8 L H( `! c child_2(j) = u_limit(j);9 J! y5 v; z2 d- W2 A5 a
elseif child_2(j) < l_limit(j)0 V+ K) y& b0 m8 ], D# A( t; D% t
child_2(j) = l_limit(j);6 b \: l# a) x g Z
end
0 ?% G# o! i) O: f0 K end% Q& x% ~: R K$ N b7 h$ U2 g6 T- B
child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);: u. K+ ^) |3 [$ Q
child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);3 ~, A% ?) L7 B. n0 ~5 \2 ~" f
was_crossover = 1;
; `9 U4 Y- w+ ~2 Y/ d+ i+ A2 q was_mutation = 0;
9 E" J: g7 m# i4 o % With 10 % probability perform mutation. Mutation is based on
7 G; r! |5 {! R9 T1 l! ^ % polynomial mutation. 2 i7 m7 H7 o6 j* G- [2 d, \
else
/ k- }* a8 G4 b % Select at random the parent.' c# y) u+ A$ W" C9 e, ]1 C1 d
parent_3 = round(N*rand(1));
* m+ B( F2 T, i6 c if parent_3 < 1" h; J9 N2 B" ^) U9 m' {4 E
parent_3 = 1;
# l9 m' E6 y, n# D3 [: H" i end
, w: W2 e) `4 x) E/ h8 ? % Get the chromosome information for the randomnly selected parent.
9 ^1 K7 A9 v; v# G child_3 = parent_chromosome(parent_3,:);
" y% j0 S- b+ ^- ]4 }# t5 b6 d % Perform mutation on eact element of the selected parent.
/ n( L4 A- Q4 |3 d @. [ for j = 1 : V
% G! c) m9 q: K5 ~3 w+ F6 w- X r(j) = rand(1);, z6 s7 `7 E6 X- S
if r(j) < 0.5
, A% P# k$ e G/ s# h% m% Q" P8 F delta(j) = (2*r(j))^(1/(mum+1)) - 1;& K$ ~1 E7 H0 \+ w( i/ P" R
else9 _ L% X7 r7 f* o K5 [
delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));* H4 h: { K% ?0 v/ ^
end
$ p( A1 M0 q8 q1 I$ ` % Generate the corresponding child element.2 V+ F2 p' H* b* G2 ?7 n
child_3(j) = child_3(j) + delta(j);
( n, P) H* X$ d1 ]- \4 K: E+ r % Make sure that the generated element is within the decision' C% W7 [) C+ b2 @0 @) M# l8 d
% space.9 {' X7 ~% ]& L" H% k4 T
if child_3(j) > u_limit(j)! S+ ?; O3 h) U a1 [
child_3(j) = u_limit(j);
) j- s0 s( B% {1 L elseif child_3(j) < l_limit(j)
" j) b: p2 h+ @6 A+ A3 G child_3(j) = l_limit(j);
. d; x v) u2 r, b- M7 ^* V! q end5 S# d2 E2 v: c9 H4 }3 e
end8 }1 W- z+ p1 w' F4 ], p; D/ i& d
child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
/ ?# v2 W/ n& h7 o/ V/ \5 Y % Set the mutation flag2 L5 \1 b: G: g, R
was_mutation = 1;
+ J; H; i& ]8 {, m* b" r; V was_crossover = 0;
- _3 y9 g' d1 u9 d; E$ r4 {% D/ S end% ^% [' v7 w5 B3 A& Q
if was_crossover6 c- o7 _# E- B& T5 n: Y
child(p,:) = child_1;
3 `4 M$ G& I+ o: h: f5 ]! i; Q7 a child(p+1,:) = child_2;! V% x6 R0 W, @2 J3 p5 S- A
was_cossover = 0;3 `. \ }7 m" T6 c [/ M4 c
p = p + 2;
5 v- k3 I" p* Y1 y @ elseif was_mutation
; u) x1 L j# w- u' G5 k child(p,:) = child_3(1,1 : M + V);
& ^7 ~7 i/ L9 l# t7 i was_mutation = 0;! n, O/ \7 b% y e. [3 w
p = p + 1;! m/ @4 z5 v1 A& H
end
2 c+ P0 t( [" R F8 o" h1 G _end
+ G: @" ]( v; A, f' Z+ ~f = child;
+ ?8 v) W" W7 H% P2 Y" w9 l
: k# \! w4 U& S7 \
2 D0 q# f E1 p9 q( v0 z+ O⑥replace_chromosome.m* M0 B0 G8 T0 Y/ X" H
+ i0 T' `6 u& x9 z+ Wfunction f = replace_chromosome(intermediate_chromosome, M, V,pop)
3 Y6 _3 t! {2 V( z8 O
% W+ ]; O( B$ y5 h4 h7 @6 {4 b1 P7 }6 P* Z& F6 y
[N, m] = size(intermediate_chromosome);4 L6 K- r$ e) J* H! W, u( D
) C' b. P' _ g1 A0 i0 o% Get the index for the population sort based on the rank- o' H& B. D" _+ h0 ?
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
( l! t- \# ?# W, W
7 x" J* j& J" [7 B& \# y+ L. yclear temp m
/ U% ^; E- N% p0 M4 F' ~1 Y5 E2 n8 w! r; s' S' D
% Now sort the individuals based on the index
* I( b$ J% K* X8 Ifor i = 1 : N) \% e# q# x# S' a6 R( `
sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);/ s9 ^# z: }& B/ v, C- i* t) t
end6 N- [5 G2 n+ h
/ ?! S0 b$ w- [- s+ }7 F
% Find the maximum rank in the current population8 A, D% K6 n2 ]1 h
max_rank = max(intermediate_chromosome(:,M + V + 1));% K1 R: w/ i' C; ?) Y3 e
9 }* ?; s0 F/ c8 _4 a% Start adding each front based on rank and crowing distance until the+ p5 s0 Z, Q$ B
% whole population is filled.
" i6 a( h1 O% k3 \6 u" |previous_index = 0;
( |3 D8 w9 k% M vfor i = 1 : max_rank7 x0 l* u4 {: B: b
% Get the index for current rank i.e the last the last element in the
# f2 g m, `8 k2 q! F3 L+ u9 u % sorted_chromosome with rank i. . k8 e9 c( z% T: x: H$ L5 K2 d
current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
! s0 t" v6 d: n) C, U1 j % Check to see if the population is filled if all the individuals with
/ E. F; C$ K3 v5 l % rank i is added to the population. 0 }; \& Z e" V/ b) _
if current_index > pop
4 N/ i+ l, p: T) l1 s' m& x % If so then find the number of individuals with in with current
3 |& d [" N7 k' f9 [+ W, ^. K* m( } % rank i., i: k3 B8 c; F: l! e' H
remaining = pop - previous_index;
5 e# V- n7 z9 z/ B' @6 j2 m! ^! A % Get information about the individuals in the current rank i.
* r; {6 h3 A, j, ~! V# ?# ]8 o$ h temp_pop = ...
1 t6 O! P0 W0 {1 ?' t0 P% X sorted_chromosome(previous_index + 1 : current_index, :);9 l, F( p; S! d/ p5 I
% Sort the individuals with rank i in the descending order based on1 P2 ^. u+ \) N' ]) H
% the crowding distance.
; L9 X* V; S# i1 v! `" |7 y$ P [temp_sort,temp_sort_index] = ...( a* r8 o9 f4 M1 e4 z2 L% q
sort(temp_pop(:, M + V + 2),'descend');
& A- |# h* t* [3 ?) [ s% ^ % Start filling individuals into the population in descending order
6 f1 D q% N) F4 u* L % until the population is filled., Z; N1 f3 c# W9 R
for j = 1 : remaining. q6 F7 u* C. E% I+ P! _3 \7 u
f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);1 k7 z0 c3 C: E% K6 y
end8 ]$ z6 O/ e# ? x
return;
) Z5 v0 u( U- Z elseif current_index < pop
; Y& d- T3 m5 } % Add all the individuals with rank i into the population.0 L( Y; I$ b& G9 h/ H, q, A) x, N
f(previous_index + 1 : current_index, :) = ...
/ f* _; K# i3 z7 x0 W sorted_chromosome(previous_index + 1 : current_index, :);, Y$ x- H; M/ _* Q5 [: G
else1 A9 n. b t5 ?* G# l4 |
% Add all the individuals with rank i into the population.
- v- n& {; b& U$ J9 i3 R# A* [ f(previous_index + 1 : current_index, :) = ...) R9 A/ j& W! I4 p9 A
sorted_chromosome(previous_index + 1 : current_index, :);
1 c" T7 I k. Q- Q1 t return;5 q) A' |6 W) `: W. g3 ~% G
end
. G: e+ q4 Y* d+ n# f1 P % Get the index for the last added individual.
" P* v" y `) E7 c) w! e previous_index = current_index;8 u P/ A9 O6 w: v! M& M1 z
end
4 v9 y) }. V$ k) @" A
^; ^6 {" A5 t) t N2 t
7 l$ V+ @6 N0 x5 W, T) S⑦自定义评价函数(我选用的ZDT1函数)/ P) i7 o/ c% P; Y
8 l7 a" o/ Z- Z6 _) a
function f = evaluate_objective(x, M, V)
6 r! t3 @% z- qf = [];2 X! d/ c2 i0 u# Y4 f# D. Y/ Y
f(1) = x(1);4 O% o4 J* V! O* z
g = 1;% D% C" s% ]" M2 ]( [' J
sum = 0;
d V$ f2 k) s+ w \for i = 1:V: y o( p6 ]+ [8 [
sum = sum + x(i);
4 O- N- s& Y. z0 K+ X; }% {end
; V6 y0 \; j. @ k: ssum = sum + 9*(sum / (V-1));. _; @, t- D N7 I% F5 r! N/ I
g = g + sum;
0 U& Z2 `1 i1 r8 f" m' ]6 sf(2) = g * (1 - sqrt(x(1) / g));5 y/ b0 A c6 e2 p3 G
end# ^% x! P3 I, V# C: D8 ^3 h: ?
! T h7 {, C9 H! g* h% o+ u1 C
; f% F$ h+ q3 I8 ], ^* N500个种群运行500代的结果:
" q$ ^ R# s: F% S% M
+ c2 L2 C/ Y# i' H( q2 }' P' M7 k; G( `6 Q( a" M% ^# E
6 j3 D+ o3 Y' Z$ @9 g1 L' b
8 ~" `; |3 O+ \ i# S6 U7 y( I1 @/ ?# Z: D
6 {9 c" s: m9 t# q; e7 R7 a# ? |
|