|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
序列 x(n)的奇偶分解的公式为:
' l$ K, b. U' b
, A- L6 c* Y R1 B( J' w
! ]) O7 _; z/ z( t3 J
% G4 o3 @7 h8 S0 f( n
+ O, X1 f# X' ?* D; c" q) A4 H5 v
- m# x9 J: P9 D5 t4 i' k
编写一个序列 x(n) 的奇偶分解式 xe(n) 和 xo(n),需要考虑的问题是序列长度,下标的变化。
1 y2 w6 Z+ U6 |
, f" O6 l; \6 _0 R$ |6 R4 R这里必须做个声明,下面的程序中用到了前几篇博客中的几个函数,这里给贴出来:2 g9 b& V0 C7 `2 S9 {4 Y: R) r
" [5 U" i1 L! h信号相加:' n) R% V ^# u7 [3 m
1 x% }$ l5 g. l( {9 `2 ?
function [y,n] = sigadd(x1,n1,x2,n2)
" b0 h' L) l F8 e/ U3 M% implements y(n) = x1(n) + x2(n)
4 N& _4 K; S8 z% [y,n] = sigadd(x1,n1,x2,n2)
* L1 G$ y8 O+ S3 V%____________________________________6 F, F; M7 b z
% y = sum sequence over n, which includes n1 and n2, c7 k; c5 y# H6 K( h& R; z
% x1 = first sequence over n14 Q+ s" l3 @- @4 H! [+ V* `
% x2 = second sequence over n2( n2 can be different from n1)( N( [* d! s+ d5 f
%4 G2 T0 ?; F+ R P/ z, q+ ]* Y- b
n = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n)" {- G3 z( U; s) n
y1 = zeros(1,length(n)); y2 = y1; %initialization8 ~ [6 v' z. V" \. E5 l
y1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y1
* \* x; k9 O% A5 v2 V& G! w# y# My2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x2; %x2 with duration of y21 F8 s; F! R! s- H& P
y = y1 + y2;
- o @' Y! H6 r+ g* K4 m7 U2 w0 ~1 m, D: ]% {: ]
5 V- l3 l' E9 `- I6 k" Q% ~4 z
信号移位:
/ i0 e, F& s$ q& g% E1 Q/ N
7 O. ^5 N6 c9 _4 B3 Z) @6 J2 t) [" `3 t1 Gfunction [y,n] = sigshift(x,m,k)" {) G9 M- n9 S1 _
%implements y(n) = x(n - k)# M% E+ C! I6 U3 X1 [+ X$ z. V
%_________________________
# o7 a$ y3 Q0 L7 U' n9 |0 d%[y,n] = sigshift(x,m,k)- [( I3 w: j# ~2 X0 g1 z7 A
%
n; B" O8 Y$ ^3 x9 S. un = m+k;. n4 E3 [7 W* g
y = x;* O( ?- ~8 h, w% X
. ?- T: C5 O& n g3 z
/ I% i8 T' U3 C
单位阶跃序列:
- y: u3 _3 z2 \8 _, L7 X. x% ^7 q W' y7 q. t6 i2 j
function [x,n]=stepseq(n0,n1,n2);
) E B- u$ [ z& B( T, w$ Q% generate x(n) = u(n - n0); n1 <= n <= n2
. C& Y4 h; s. m# |8 A1 h; J%_____________________________________________* [0 e+ T* t8 v! @' E* Z3 V
%[x,n] = stepseq(n0, n1, n2);
( P# Z3 o# ]6 k# U1 q) E%
) O" s4 R$ |$ y2 i% x8 |n = [n1:n2];# t5 V( f, k* Q4 O! N& l; x
x = [(n-n0) >= 0];; ~' ~; Y% t% O
6 @+ C9 Q+ [6 L; ^# _5 V& ~
' p, T" V! C6 y j# y
下面给出函数程序:
8 o# G. i: R1 j8 S. C" r$ d8 f% @" f5 h$ N1 E5 F7 A Z& j
function [xe, xo, m] = evenodd(x, n)
) _. v+ A2 h [, m/ W# H% Real signal decomposition into even and odd parts
% y3 h- _! r% n; L$ P9 C%__________________________________________________
/ K+ ]4 X) i7 a& G3 E [- c%[xe, xo, m] = evenodd(x, n)
: x7 e, X+ N8 W6 K%; A1 F. M3 X* O+ N
if any( imag(x) )
. U u. B3 t- D$ r error('x is not a real sequence!');( e% o- c3 \+ u
end. H4 {/ L( Y9 x! e2 q, o
7 g+ K! i2 E) ?5 L
% Ensure m of xe and xo
3 `$ D+ G7 N! qm = - fliplr(n);
/ R0 c9 B2 W0 U) Xm1 = min([m,n]);
, L4 t( E3 i- A, c, v5 [/ g! j- fm2 = max([m,n]);! S' I k W' T* W9 i
m = m1:m2;
' G( }! W' q5 Z) v7 L# |7 h
) |. |9 A4 Y! V, t1 u4 X/ `1 M% Ensure x over m5 S. j6 o( h) y
nm = n(1) - m(1);
, `' y. M' v9 t a" y8 m: Vn1 = 1:length(n);0 K; o4 A- h1 P7 U& O3 c j
x1 = zeros(1,length(m)); % initialization
% r) h% X( p9 nx1(nm + n1) = x;
8 \8 |, j1 _& Y! d' j, ux = x1; % new x which enlarge index n: h; u# p) `& o2 d. ?
' e3 z* b9 J. s C+ d% xe and xo2 k* u( \0 O" ]6 y: @" B
xe = 0.5*(x + fliplr(x));: g' }* t2 r8 ?
xo = 0.5*(x - fliplr(x));
) i0 H) I. W6 J0 w- I2 d$ J3 P9 j7 V4 U6 {/ d
9 j$ a- k9 C/ `6 r
序列和及其位置分别装入 x 和 n 数组。首先确认是否已知序列是实序列并在m数组中确定偶部和奇部分量的位置,最后将所得奇偶分量存入xe和xo数组中。
; h8 \9 z8 s! x% l0 m N2 _- D! C7 _9 w# X0 S
下面以一个实例来验证上述函数:3 v* ~) a. C1 j; U
" ^& V6 F1 o- @
' t- N- P. @+ K- f
7 }5 I5 N, ~1 _1 A. i将x(n)分解为奇偶分量。1 g4 @6 J7 Y) b5 z/ x* j/ I9 [
. K8 d6 L' Y6 l; F5 x# i, [$ T( N
clc" M. d8 i2 F; ]
clear& [" ]" R& q' T' Y* a
close all
) z+ u E; M2 G1 j% k+ `# f5 A& K9 X# {6 G7 C
n = 0:10;6 d1 T4 }1 Q$ h4 L2 P8 ?+ c
x = stepseq(0,0,10) - stepseq(10,0,10);
* U- Y# t* s6 W# x[xe, xo, m] = evenodd(x,n);
9 j8 v3 m: P; |7 \+ O) O- U. @8 Y
subplot(2,2,1);
8 b' Z: }' u# M. {2 ?$ Zstem(n,x,'filled');
: |, |+ y9 u' C8 ~2 otitle('Rectangular pulse');
3 j+ o; T. o6 A2 Rxlabel('n');ylabel('x(n)'); % ^7 Z" Z {$ i
axis([-10,10,0,1.2]);
# [6 o1 G7 z b& I* U8 k1 N. z) C Y2 |5 o0 T
subplot(2,2,2);
" S3 ~ v( j0 A! C1 t! |" Y' Lstem(m,xe,'filled'); g1 d7 M3 T7 _5 |, O! t
title('Even part');2 S, z% K% a" }( k2 x0 F8 e" Q
xlabel('n');ylabel('xe(n)');
* O$ z9 m3 ~8 S) |axis([-10,10,0,1.2]);$ T% A+ }6 S) Z( ]1 `% w
\: Z. p2 ]1 T" xsubplot(2,2,4);; K# v& h2 Z: x1 r) k# F; u
stem(m,xo,'filled');
' L* h. E2 j+ z% \! [title('Odd part');0 }, u) w# Q& n+ m
xlabel('n');ylabel('xo(n)');
& t" ?* d, j: Q" ]+ F( D1 B1 Q$ `axis([-10,10,-0.6,0.6]);: V0 E" m/ r3 c8 P' ^6 R. e7 B$ [: ^
, u4 C, i! |, O4 T
% D' V4 b0 J7 U9 Z) n
: I2 N6 x& ~/ L2 {( d7 l事实上,这篇博文到这里已经结束了,那我还想看看序列x(n)= u(n) - u(n-10)的合成过程:5 p% T" m2 C/ m& `/ u+ F
6 \" {2 i( l2 c+ s3 M6 r. D
clc
) h9 X) V2 `3 O1 Iclear# |7 U- \6 j5 I8 x7 f5 B/ c: ^
close all* ^# F( E1 b; v# K: D$ p
+ ?2 Y: M" |! n. r$ _- Z[u1,n1] = stepseq(0,0,10);2 Z+ p1 w3 b, J2 u" U! i' U7 E+ ]
/ |0 }% m i! |; c. c9 i+ @0 c
subplot(3,1,1)4 t* v0 z/ I+ e8 T4 J' |
stem(n1,u1,'filled');2 `, _' _# ?& p) W
title('u(n)');
9 y' r% k1 T* J$ H: A" ]ylabel('u(n)');xlabel('n');
4 |* q4 S5 T3 J4 J% P; H5 Iaxis([-10,10,0,1.2]);
" `5 I$ T& o! j( K! F" O. b3 L/ J7 O7 U
[u2,n2] = sigshift(u1,n1,10);
3 _, q7 K# E- i6 |& Ysubplot(3,1,2)
( T E) t' f6 V5 L& ]stem(n2,u2,'filled');, j8 G* q" V4 [$ i( w; R- ?) Z
title('u(n-10)') y- }+ O1 y$ V1 r5 Z8 b( n
xlabel('n');ylabel('u(n - 10)');3 j0 U$ e3 r( K- J' u6 k4 V! ~/ H
axis([0,20,0,1.2]);
: Y5 f) t3 M. V- C* a5 n1 v6 I4 I& U5 Z* A' F+ C2 a) Y) t
[x,n] = sigadd(u1,n1,-u2,n2);, q4 ?( x0 O! G. W9 {& ?
- M1 Z- N$ i. i$ t8 \, }subplot(3,1,3)) [4 s0 N; U z) c4 o0 p7 n! U
stem(n,x,'filled');
8 P4 k! y5 \7 ]: Ptitle('Rectangular sequence');
! U( K! l5 o; f2 |( Qxlabel('n');ylabel('x(n)= u(n) - u(n -10)');% [/ _% I, q" C% h. C! Z
axis([-10,10,0,1.2]);" W* S' o* f; L* |- J
, e" t) T) \' _, o3 Q) ?
8 B0 V" `5 w* n8 w+ D
5 e$ t" C& H0 @/ X5 ?, o. e5 Z- R+ A: X6 D
|
|