|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
序列 x(n)的奇偶分解的公式为:; p+ n8 C7 t5 {; f `: k
0 a$ d& x2 H% N2 y4 n. `$ ]. n
: ^( B8 I, Q; X" l
" L& C' ]$ `: |* g0 ^; P) K7 k
2 r4 p% T% q# g: B1 ~# d9 \8 W6 E. x" C- C" O& S# E
编写一个序列 x(n) 的奇偶分解式 xe(n) 和 xo(n),需要考虑的问题是序列长度,下标的变化。9 G; {/ B$ Z" b8 V' c( H
. g; I) F# R" d! ^- R
这里必须做个声明,下面的程序中用到了前几篇博客中的几个函数,这里给贴出来:) h3 x( k0 @9 F: V. D5 r
( ?6 U- ^ m$ i( j& e& I+ z& q
信号相加:
9 z& i+ ~4 ^- k# j6 @' Z; R; {/ T4 E2 s1 N
function [y,n] = sigadd(x1,n1,x2,n2) @( ?1 x/ s# c, c
% implements y(n) = x1(n) + x2(n) J( V0 f# e o0 ]9 f& S
% [y,n] = sigadd(x1,n1,x2,n2)
" Z+ a: N; M9 G; d! j( M) \%____________________________________. o; Y/ P; y& ?/ L2 I6 e
% y = sum sequence over n, which includes n1 and n25 [+ T" c- ~ x2 @$ W, l4 ^
% x1 = first sequence over n13 W5 c: ]0 ?7 O( Z8 w) B% `
% x2 = second sequence over n2( n2 can be different from n1)& b* A! {3 J5 ]$ z( ~+ U
%$ V9 a5 B+ u& @" Z, D# _. |
n = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n)+ j' @) ?: M2 W) C
y1 = zeros(1,length(n)); y2 = y1; %initialization k* g5 n, `- r& U( I; P
y1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y1
/ ?; I. D: x& _$ l( N: h) s( Iy2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x2; %x2 with duration of y2
/ K! P* _; }0 \9 P4 ^y = y1 + y2;) E+ q$ Y* y. s
I, @5 f! B! j9 p
6 f* I# x! V: K' W
信号移位:1 T% ~6 g+ G1 W, m/ Z X# h6 p
* O5 u6 w9 h3 } y0 Bfunction [y,n] = sigshift(x,m,k)
& y+ {0 s& Z3 z% ]: A% k%implements y(n) = x(n - k)9 o5 o" Q+ S. B* Z4 f) Z ~+ K8 F
%_________________________
' s9 T! |$ k" z0 S" D%[y,n] = sigshift(x,m,k)
( t3 ?/ J: p6 y' Z. \ q" I%
0 r0 G% Z5 \7 Y. r9 n% w% gn = m+k;
- l6 g6 S0 P0 G2 zy = x;
/ Y3 J& ~. ~; r' z- b: \* n) V: O8 I! Z5 V0 n3 z" N- v
+ x. w1 G" G1 t0 S+ D+ d+ m单位阶跃序列:
" U/ C2 }9 |2 \0 d
# O4 J5 V5 V7 n2 \6 P4 d- Pfunction [x,n]=stepseq(n0,n1,n2);
# f$ ?% c: n/ Z! ?% generate x(n) = u(n - n0); n1 <= n <= n2
0 o: \( j& T+ d9 ~7 X%_____________________________________________, w* [1 v* F+ F1 V5 P" S3 C
%[x,n] = stepseq(n0, n1, n2);$ l2 e+ V9 w; O. p7 f
%
# Q- ?( n0 _$ [9 En = [n1:n2];1 t3 D/ T) ^0 T, }; l* `
x = [(n-n0) >= 0];
; a9 k0 d$ L& y& l' ?7 f# @
$ f" J# H" `7 X2 Q
% n. ?# U; u0 t, z- m% B下面给出函数程序:: f/ I# I4 F* y1 N& U2 q
9 k; U% }3 z5 R: y6 a
function [xe, xo, m] = evenodd(x, n)
3 \/ R6 C# ]& B$ U+ s! Z% Real signal decomposition into even and odd parts
5 e1 G* l5 [+ k! u: n7 Q%__________________________________________________$ u' S* n2 Z/ N- U. m
%[xe, xo, m] = evenodd(x, n)5 O% J1 T: q0 w" [& H# ]4 H0 H
%! S/ p- J. D+ h7 p {9 V* m
if any( imag(x) )
& D0 e/ @. b$ P+ O/ G9 `& {2 }8 w error('x is not a real sequence!');
6 x, X2 l& Q/ `6 yend
1 P% ?' |* Q2 z! r# I/ i$ O# y
' t# Q N) _: [' i2 Y# W, W% Ensure m of xe and xo4 X3 w" |# ]4 p5 r+ u* v
m = - fliplr(n);
7 Q' o7 v: P7 Tm1 = min([m,n]);
( j$ n0 S& g2 ^' B. b8 z! x% F, ~m2 = max([m,n]);- O! w8 H! y( _
m = m1:m2;
; J, R; {- [/ o& y' ]+ I' h. r7 O7 O1 q/ F
% Ensure x over m
# t0 B( X/ h: p- V- n0 P' unm = n(1) - m(1);
/ t7 f* \- k7 ln1 = 1:length(n);
3 z1 ~2 t9 ]4 I4 J7 p. ex1 = zeros(1,length(m)); % initialization
3 l# d* x% P, \5 R0 Ax1(nm + n1) = x;
# Z6 D4 _- h |6 _; V0 G) N6 Ex = x1; % new x which enlarge index n2 I6 k$ ] I% [; o* z' Y: @
( D& |) u }. o5 X$ f
% xe and xo
( P5 p! q( E6 ~+ H7 r- Gxe = 0.5*(x + fliplr(x));
" [* Z) h6 i( S. F% v- P! Vxo = 0.5*(x - fliplr(x));. q; ]! z; M; {
. n3 {* p7 @0 j. f
/ _, j1 B- B3 T1 {
序列和及其位置分别装入 x 和 n 数组。首先确认是否已知序列是实序列并在m数组中确定偶部和奇部分量的位置,最后将所得奇偶分量存入xe和xo数组中。6 A$ V( q) @& g) e
# l4 r W. g- Y6 x) b y7 d4 r* H0 {
下面以一个实例来验证上述函数:
6 e1 b$ @2 U& `1 v0 X8 @( S/ M1 {$ X) }+ \- C
. s- j$ Q/ [' N, m
" ~4 x4 M& I- W0 G8 J( _5 z0 H将x(n)分解为奇偶分量。
* |3 S! C$ I3 j- F
: ^2 d; l" {& `& r, n# R# rclc' N$ I$ N. H. G) ^' ?* N7 B) m$ c
clear9 k$ A! w; d6 J! C- m
close all
5 L. e; R0 {# U( k
8 S9 b- ]! s5 Z" ?n = 0:10;
6 [2 D$ X& E2 zx = stepseq(0,0,10) - stepseq(10,0,10);
: a: D3 z" K! }/ T2 ^[xe, xo, m] = evenodd(x,n);
: [, D" ~+ {" f2 w) C+ d
6 M% I) T8 n Zsubplot(2,2,1);
5 u4 s' s" B6 ?- @stem(n,x,'filled');
3 _! E( S- D0 l" M) htitle('Rectangular pulse');
* t- a" H; l: L- P5 u0 ?- U Hxlabel('n');ylabel('x(n)');
/ }- ^9 X5 G6 m- }' k! _axis([-10,10,0,1.2]);
8 C6 L: |5 }) [/ K: A- r# U
, K. ^: u; Y0 D* K8 b2 [subplot(2,2,2);
, v6 X$ w7 U- M, ystem(m,xe,'filled');
s# V5 z! G1 @( ^: e. {7 vtitle('Even part');
& G# M0 @) G. r W& k; N% S3 qxlabel('n');ylabel('xe(n)');
* H: c$ m/ i: Q" I2 x& e3 ^axis([-10,10,0,1.2]);3 A) h( i# U2 u( Z9 F) e# U' j* v
& M' l6 ~1 R$ a( ~) jsubplot(2,2,4);; s" s# s, B8 @8 N2 G4 N
stem(m,xo,'filled'); N) t( a* [- g4 t4 S
title('Odd part');& N( x# _. p }3 v
xlabel('n');ylabel('xo(n)');* U2 W( n0 U) R Q. X
axis([-10,10,-0.6,0.6]);+ S$ w. h. N2 d9 S- j) S, W/ H# n
* h6 R4 \8 @- m* O
) L. Y# f& r& y2 ~
' ^1 j1 c: g* A1 l# B事实上,这篇博文到这里已经结束了,那我还想看看序列x(n)= u(n) - u(n-10)的合成过程:) t, n3 M# h* q/ r+ ?6 J4 p
- c8 `- k B9 @# X6 r
clc# [ X- F) H# O6 m. B+ G0 s' H. H
clear; N3 Z) B6 D; @: x y' |3 N
close all1 {& e/ [+ L* t$ c8 D
. o) M" F8 b1 H2 u
[u1,n1] = stepseq(0,0,10);! o% r) Y7 C0 f* u7 }1 b( X
8 X$ V4 A4 [1 e3 X
subplot(3,1,1) f! r1 k8 \. f `
stem(n1,u1,'filled');
; n3 s0 _6 X: {3 E4 S6 X# ~title('u(n)');
2 m( E" T! B v* v" Pylabel('u(n)');xlabel('n');, C% w; d6 T+ `' }# l
axis([-10,10,0,1.2]);
" W* F+ q0 w, n8 X, ~8 V) K0 @( K0 r/ r+ J7 \3 d' M
[u2,n2] = sigshift(u1,n1,10);
! @" k% C/ [/ ?' vsubplot(3,1,2)4 t7 [( G, O" h$ w; `/ @$ H
stem(n2,u2,'filled');
( G7 Q; \- D: i7 c6 T1 L B3 ?) ntitle('u(n-10)')5 }2 O! a: Z$ I9 O2 J" l" M& b
xlabel('n');ylabel('u(n - 10)');6 X( Z6 k; R5 D$ L
axis([0,20,0,1.2]);4 B* M2 w% k$ R- g2 j- O) Q
5 Y7 k4 m7 \% O
[x,n] = sigadd(u1,n1,-u2,n2);
0 Y5 g% s) _8 F8 h
/ d- f% o' M/ k0 Ysubplot(3,1,3)
+ D2 Y7 I5 t$ J& z" _; a4 gstem(n,x,'filled');1 \# V9 g/ K0 y% G ^
title('Rectangular sequence');6 _( I1 l, s3 c, Q: q. C/ E) Z
xlabel('n');ylabel('x(n)= u(n) - u(n -10)');
4 }+ c! T7 t) P m& B% Taxis([-10,10,0,1.2]);
: |$ J: W4 U; _' V8 N3 P$ {# }7 |4 C( {: R1 Q1 T% h9 ~: b/ E/ M
( |; S7 U0 b5 Q2 z% q' F E- r d2 y$ W( Z+ c S) R
' I& Q0 D6 C$ D. M* _ |
|