|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
" S& m9 \) N2 v# r- I
函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
" g' M) o# ^5 N. h6 i* T5 D6 h
: `7 R; x* [; M0 Gfunction x=besselzero(n,k,kind)& C+ t m$ o/ ]$ N( Y
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# _: e; Q( O! t5 A4 y( Z%
- z; ] d8 o1 m% besselzero.m7 ` i6 ~0 J% ]: `5 l' f, l
%
, O# ?+ y) ~/ S9 |$ Q9 w/ q% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)
/ r% x" {, V5 j7 T+ {5 C. d. Z( T% using Halley's method.
8 X1 \2 Z- `3 o' p1 O# H%
+ g# Z- {5 _9 T% ?; z3 J: {8 ]% Written by: Greg von Winckel - 01/25/05' x0 K0 `' w4 \6 m/ T- q7 i
% Contact: gregvw(at)chtm(dot)unm(dot)edu
9 [7 j: F9 Y1 j Z: S5 Q) t" _% e9 s4 d; ]1 s% x; }2 U$ I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1 X+ @- D6 ^# v$ }* v! ~
k3=3*k;$ J* F. f, e! S6 @' n2 H
x=zeros(k3,1);7 P( q; f% f- h
for j=1:k3! P H1 q1 `( a* B% [' g
8 r7 j+ s" g& M2 r, R' c % Initial guess of zeros
; S9 F. C6 H- H5 R/ T x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;
$ Y! E3 W- ]. Q8 ~/ I0 J $ g9 X2 Y; [! q3 u B
% Do Halley's method; F' {0 g- q2 v" B
x(j)=findzero(n,x0,kind);
. }. O4 l( z6 ?2 o if x(j)==inf
% T7 G6 G% H2 O, D- y+ H: e9 C7 C0 Q error('Bad guess.');( T6 r: b8 K! L) {+ N( Y& _
end0 l# J9 U; b- `( e
. z8 j5 Y& ~+ g4 c& n" \, I' \
end4 {7 S0 T* {7 r) u$ ~5 \
x=sort(x);
6 z; f5 w8 ^% }dx=[1;abs(diff(x))];% c/ l* P+ F% q* l2 Y
x=x(dx>1e-8);
: z" P0 I' C f6 M: q: I; a7 \x=x(1:k);
( @8 M$ }$ k l2 N+ u' Rfunction x=findzero(n,x0,kind)9 o1 ~/ R k# j0 f
n1=n+1; n2=n*n;
0 ?! Q: w# l, i% Tolerance
/ T& p7 @# M4 ptol=1e-12;
( k! U( A$ b X( p" {) V3 q8 ], i% Maximum number of times to iterate: A7 Q( O+ B' @
MAXIT=100;
Y0 O0 [8 l' U* v+ T! \- Q% Initial error" m% s! |0 j+ D0 l* r3 i
err=1;
: ?8 t8 }* Z$ T/ y0 hiter=0;
" b" t. j0 H2 v3 g D: [while abs(err)>tol & iter<MAXIT3 G p2 c$ A- q' B
2 l# L% u/ q& `3 Y. w. z switch kind" r& w2 [8 q5 ]6 R0 ?# b& e0 Q
case 1: B1 g$ A/ r! q" ^( |
a=besselj(n,x0);
' t& d' S2 u7 [+ Y( a3 w b=besselj(n1,x0); ' q+ |' q k+ g% a! P: l; g* X
case 24 [1 `' @4 K, H7 N6 y) e
a=bessely(n,x0);
+ [0 D+ Q+ J& Z' r b=bessely(n1,x0);
5 y; x. S9 r: ^6 p6 O end) W. y4 v/ |- n& ]2 [
. Q) Z( T. G- T+ K' D, \3 X x02=x0*x0;
' S% W. E- n* a9 X3 P+ R5 l
* [; \+ h7 n7 z$ c) w3 x0 [ err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);2 _0 E( `& k# s5 B8 z, H y) U
^' d; s4 s7 W: y, X. D) r2 ` x=x0-err;
; X d( n" E8 }; E& {/ I [ x0=x;. s1 U: u- B. ?1 a8 q4 D& O; T
iter=iter+1;
! h- L- p; f" \( G+ E" S/ ~2 | ' \5 Y8 z$ u& ^$ `2 ], T' r3 d) \
end
# O! M* g0 V/ S& D5 V8 Q1 a3 }if iter>MAXIT-1
3 i V8 |- D0 j9 _) a5 a warning('Failed to converge to within tolerance. ',... I# v+ J6 V4 n$ S( Q8 S F
'Try a different initial guess');
. i* p0 P; R9 ~& M' P x=inf;
5 |6 ~4 k+ x0 m& G4 R' `end6 Z! A# p ]: [; d: x3 |
: e4 m$ Z( R4 |" T: c$ E7 I. \
|
|