|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
2 f! U# F* l- X$ _# A
函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
* D$ s: b; E: U0 z7 V6 n+ c% J
" I, v2 P. y. d# b. k8 U Rfunction x=besselzero(n,k,kind)1 S9 P9 |, U6 X* u
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
. Z3 Q) Z- R3 C' w%
; o" M* L7 r: O5 q/ T' x% besselzero.m
. g: h! f2 j [; j; i%1 j! V7 i' m" F8 g1 o5 p3 G/ S1 G
% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x). L6 v- ^$ b% `0 \8 E9 d7 g
% using Halley's method.
3 e. R4 g& C. W# m" ^( a }2 e%
( P( N% _3 f+ O+ Y4 v% Written by: Greg von Winckel - 01/25/05' A) `# _$ s2 d3 H8 @5 L
% Contact: gregvw(at)chtm(dot)unm(dot)edu
2 K. T, F5 B5 T2 }* E" P%7 F. u8 O5 \ s# H* U& _
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%9 D) E' ^, {7 O4 ^1 d/ U! c
k3=3*k;
5 U. \6 i4 L, L! \x=zeros(k3,1);# E; `2 b; b! I4 Y3 M
for j=1:k3* d1 {8 h$ ?. o" u
* D* J- s/ I' {! c9 W % Initial guess of zeros
: v( P' ^- o8 Q/ m# i x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;
1 Y0 F- i' x: `( G - F2 q4 q2 q6 N! G r! V; g
% Do Halley's method
, [2 @( v2 e/ j x(j)=findzero(n,x0,kind);
! x) u$ \2 |6 I9 J4 [; Y if x(j)==inf. e, |; g0 n/ Z
error('Bad guess.');
# V6 T2 k0 B' f1 {4 Z e# `1 ? end
l9 k/ b9 P) J" P. N- r% X ) w3 u& @: L+ E0 @1 Y1 x
end
& d2 ]1 m* I# \1 \x=sort(x);# L s' q6 Z4 b& q0 K1 ]! p* Y
dx=[1;abs(diff(x))];
; H$ q, e' H5 J' Y' k* yx=x(dx>1e-8);7 e1 z% f2 e1 b }
x=x(1:k);3 }4 F3 \! B# L0 S; U0 R) f
function x=findzero(n,x0,kind)5 P) H. |+ i9 n7 Q5 n2 G) n1 X
n1=n+1; n2=n*n;% N$ p8 q- b. S3 r& d
% Tolerance
& W3 {7 _$ O n/ D- Q0 o7 N' _: Utol=1e-12;. i. M9 r+ T4 j; I1 j
% Maximum number of times to iterate
7 f" I) @" e- Z" y$ z* T# XMAXIT=100;
& X; ^" R& g) |. V% Initial error) {: ]7 l! x$ @- T: ^" L @/ i
err=1;
. X# j: L+ \( _6 [$ P( iiter=0;
/ X$ @0 w5 j, R- k2 A9 P @$ Ywhile abs(err)>tol & iter<MAXIT# i/ n! g" E: m5 ~* w' e" `3 D' ?
N$ z6 n% ?$ b- f2 s+ z! I' j. i switch kind* V5 l$ P+ I( Y; n* d$ U y4 K
case 1
4 O" M0 `6 z, |/ B! _0 }, u a=besselj(n,x0);
9 o. Y" P5 {5 \' x0 G7 t8 h b=besselj(n1,x0); : }( a3 _3 q8 U: P1 m" g6 L1 I- c
case 2
' ~# N( x' [5 n a=bessely(n,x0);1 w, @) p) @& g; d/ w6 \
b=bessely(n1,x0);/ l$ \$ ]; P! L
end
5 B; c$ e7 I ?$ j: q
' c8 X' H1 |5 W3 Q x02=x0*x0;
0 F% J! x- H' X* t# |6 j" q % p, @+ L8 g4 N
err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);
, D" m# X4 m8 @" r0 I5 m* c " G: b2 w4 q3 F( S1 [! {, Q3 r$ Y. ?" p
x=x0-err;
2 R- i! s: _3 y* g: S, o+ x x0=x;
% Z9 s; U5 m& k0 [2 u6 t iter=iter+1;3 Z8 U8 y* y2 m( u! |4 T/ m
2 C# ]; F/ I J' v' q
end
. u9 i% W/ N+ R% gif iter>MAXIT-1- X/ R' Q4 t4 ~3 l- }* V8 ^4 R
warning('Failed to converge to within tolerance. ',...% U) N3 Z! J+ i8 [! ~
'Try a different initial guess');8 n& G- M" Y2 |) |6 H6 F
x=inf;
2 M5 |# y2 L" _end
: A. }, c+ e/ g& R
4 |# s7 Z- I! {6 z! F p K# H% m |
|