|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
3 {- z" F0 y9 d: X) K5 I函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
1 d" R6 `" u9 o9 }! [( x
2 i5 w; P0 h# u/ ~! \function x=besselzero(n,k,kind)
' @( u+ i! t2 `0 \. A%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
) l/ r- F6 n" F+ S9 c! J%5 q0 [8 ]2 o2 N9 E/ z% x6 m
% besselzero.m
( }: G* c0 z0 u; b& `%
4 t, \0 Q2 V. n# @+ y; N% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)- O B, f( J3 v4 ?
% using Halley's method.
0 h0 O3 e/ e$ |8 j6 _%2 d6 Q. f; C ^1 A! j$ `5 y* O9 E
% Written by: Greg von Winckel - 01/25/05
' a4 |1 B( g" B$ Z$ {6 [& X8 Q# l% Contact: gregvw(at)chtm(dot)unm(dot)edu
1 W+ |/ ~4 W7 }3 e6 \& N5 Z%# D" [6 ?$ @& M7 M
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
: c2 \! [* u8 Q) U3 z. }2 ik3=3*k;; ]3 A/ R2 `; @1 W; _
x=zeros(k3,1);
Q' X6 [1 c# e8 S) f# r2 sfor j=1:k3
4 |" `+ @ ^9 m) [; `
7 i3 A( |$ s% k/ @4 q D! a8 `( n % Initial guess of zeros
+ G( p( S4 u% D5 s3 ?8 U x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;/ {' H2 C- L" i! s
* C; r, O$ l3 N* K5 B% ` % Do Halley's method
( F6 O9 u7 e, I9 t- d/ C x(j)=findzero(n,x0,kind);
* P* P8 {( Q9 V$ {( q% `/ r1 s if x(j)==inf; p9 p- a, h2 O
error('Bad guess.');
6 }* ?' k1 }6 ~( w4 W6 g# e end- @3 j( L* U5 @4 F7 L
5 D& R. `; q* N2 N3 Bend
( c3 a6 V) Q' s, N# g# A( cx=sort(x);2 O5 l1 }. s7 {8 l; r$ U A
dx=[1;abs(diff(x))];: U5 K" G1 w' q$ Y5 v( Z
x=x(dx>1e-8);
- Z0 C8 V3 _, I- S5 `5 E& z5 qx=x(1:k);
. A+ o: u J4 x, A. W6 hfunction x=findzero(n,x0,kind)5 `5 n# K. h( ^2 |; e+ z- W
n1=n+1; n2=n*n;
) y8 {+ H' r+ ?0 a) m4 x5 M8 \3 X2 C% Tolerance
# Q- M. T) t7 vtol=1e-12;
2 R j4 v) Q l# L c% Maximum number of times to iterate8 |) D1 u- Q% ]$ Q0 n8 f
MAXIT=100;* r- p8 I5 [6 l5 x3 ?
% Initial error5 i! j; P# R, ]% N
err=1;& B2 T- }8 j& H! ]' D6 a
iter=0;
+ i9 o" ^% ?$ v# w ]while abs(err)>tol & iter<MAXIT
) l) f. J9 F- @3 v " e& V4 Z* E# O+ h
switch kind; S$ g% Y+ u4 P+ v
case 1
1 j6 W7 d% E ?! A a=besselj(n,x0); 7 X* E7 o5 Z' }& t. X* }
b=besselj(n1,x0);
" z, ^# {! w2 u3 J0 k) t% f" g0 k. C case 2
& U3 S9 G0 I# } a=bessely(n,x0);
0 @ Y$ j/ y# I4 K0 [9 F+ f3 I b=bessely(n1,x0);1 y9 q2 E3 h' T5 m. ~ t
end0 z4 L0 y% z5 S- J* u) e1 \
" u2 X( b7 g2 A% w
x02=x0*x0;
5 }& `1 e- U- n) V4 y5 } , a/ b( b; V8 Z! H" q U
err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);
4 f2 p1 E4 _+ h7 j. @2 X4 ?# P : _. T l6 G n; ?; K; Y
x=x0-err;* i0 k! l: \1 Q' J* S
x0=x;
6 e+ @ S5 {9 E- k3 U# e U4 y1 y iter=iter+1;
) z4 X, E& ?8 H3 d/ H2 E3 `
4 @7 O' I2 I4 V3 kend- S1 M6 x' I& |" j( f2 \( w
if iter>MAXIT-1! B3 Y/ V$ p5 {& w9 V) m7 b/ `
warning('Failed to converge to within tolerance. ',...0 f/ o) N, J6 f! {6 z
'Try a different initial guess');
/ z4 C7 _# C4 X7 g- Q* c+ Q ]( @ x=inf;
' f; z* h" V! b3 i" dend, }, ?: J9 l0 l1 o
g. k" J% s7 z |
|