1、是什么?
2、为什么?
3、干什么?
8 t+ _1 H& d8 }, B& h$ w+ U
1、是什么?
该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣”。
史密斯图表的基本在于以下的算式。
3 E, w$ z# s8 W% T
8 a( `/ Z% n: H( j当中的Γ代表其线路的反射系数(reflection coefficient)
即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω。 简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。
) _2 }7 a: R1 E9 n# {' ~" k$ r2、为什么?
我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。5 V% I6 P2 Q1 [0 M
很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。
4 |4 [; {$ k- B: G# ~我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。
我在表述这个“掰弯”的过程,你就理解,这个图的含义了。(坐标系可以掰弯、人尽量不要“弯”;如果已经弯了,本人表示祝福)
1 k7 {+ c/ O. a
4 {$ G0 X& L3 t3 n
现在,我就掰弯给你看。
世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。
史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。
& [: E4 L. L1 O
2.1、首先,我们先理解“无穷大”的平面。
首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。2 t6 R6 V; j2 P& k! ^! n
) u/ p0 @, B, E7 D# I
在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实际称为电阻,虚称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 阻抗的单位是欧姆。
1 e2 J% K5 T8 k
R,电阻:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。
标准式:
(理想的电阻就是 实数,不涉及复数的概念)。
/ K1 W8 \; H& W: } @如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。既:电阻仍然是实数R(复阻抗的实部),电容、电感用虚数表示,分别为:
我们仔细看阻抗公式,它不再是一个实数。它因为电容、电感的存在,它变成了一个复数。
电路中如果只有电阻,只影响幅度变化。
我们通过上图,我们知道,正弦波的幅度发生了变化,同时,相位也发生了变化,同时频率特性也会变化。所以我们在计算的过程中,即需要考虑实部,也需要考虑虚部。
. z* X i" R4 Z
我们可以在一个复平面里面,以实部为x轴、以虚部为y轴,表示任意一个复数。我们的阻抗,不管多少电阻、电容、电感串联、并联,之后,都可以表示在一个复平面里面。
/ S, h3 X* s! c" {2 c Q 在 RLC 串联电路中,交流电源电压 U = 220 V,频率 f = 50 Hz,R = 30 Ω,L =445 mH,C =32 mF。
* E p) |3 g8 j3 ~$ g2 v: n" C8 u$ L! [4 d2 k; B
在上图中,我们看到通过几个矢量的叠加,最终阻抗在复平面中,落在了蓝色的圆点位置。
所以,任意一个阻抗的计算结果,我们都可以放在这个复平面的对应位置。
各种阻抗的情况,组成了这个无穷大的平面。
2.2、反射公式
信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。
% |2 z& p( t$ H. j* @8 N; Q钱塘江大潮,就是河道的宽度变化引起了反射,这跟电路中阻抗不连续,导致信号反射,可以类比。反射聚集的能量叠加在一起,引起的过冲。也许这个比喻不恰当,但是挺形象。
那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射电压和原传输信号电压的比值。
反射系数定义为:
* }. t2 S" ~6 D- j) i
其中:Z0为变化前的阻抗,ZIN为变化后的阻抗。假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系数为: : @) E* M9 u" U# S$ S8 W0 c
信号有1/3被反射回源端。
如果传输信号的电压是3.3V电压,反射电压就是1.1V。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。
' F' h0 d, y9 s) {1 C
初始电压,是源电压Vs(2V)经过Zs(25欧姆)和传输线阻抗(50欧姆)分压。 Vinitial=1.33V
后续的反射率按照反射系数公式进行计算
C+ t0 \# q0 l! H0 U: S2 G
源端的反射率,是根据源端阻抗(25欧姆)和传输线阻抗(50欧姆)根据反射系数公式计算为-0.33;
终端的反射率,是根据终端阻抗(无穷大)和传输线阻抗(50欧姆)根据反射系数公式计算为1;
我们按照每次反射的幅度和延时,在最初的脉冲波形上进行叠加就得到了这个波形,这也就是为什么,阻抗不匹配造成信号完整性不好的原因。
$ W9 Y q2 D' v/ ]+ d/ m
那么我们做一个重要的假设!
为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。
* L6 S1 n* {' \假设Z0一定,为50欧姆。(为什么是50欧姆,此处暂时不表;当然也可以做其他假设,便于理解,我们先定死为50Ω)。
0 k8 z( j* y. U: V+ T那么,根据反射公式,我们得到一个重要的结论:
; `' U8 v# f/ I- \
每一个Zin对应唯一的 “Γ”,反射系数。
我们把对应关系描绘到刚刚我们说的“复平面”。
于是我们可以定义归一化的负载阻抗:
好了,我们在复平面里面,忘记Zin,只记得z(小写)和反射系数“Γ”。
准备工作都做好了,下面我们准备“弯了”
在复平面中,有三个点,反射系数都为1,就是横坐标的无穷大,纵坐标的正负无穷大。历史上的某天,史密斯老先生,如有神助,把黑色线掰弯了,把上图中,三个红色圈标注的点,捏到一起。
. ?8 I% h, Z; O( x' j' w) G5 B
弯了,弯了
虽然,无穷大的平面变成了一个圆,但是,红线还是红线,黑线还是黑线。
同时我们在,原来的复平面中增加三根线,它们也随着平面闭合而弯曲。
黑色的线上的阻抗,有个特点:实部为0;(电阻为0)
红色的线上的阻抗,有个特点:虚部为0;(电感、电容为0)
绿色的线上的阻抗,有个特点:实部为1;(电阻为50欧姆)
紫色的线上的阻抗,有个特点:虚部为-1;
蓝色的线上的阻抗,有个特点:虚部为1;
0 I( v' S6 L1 ^5 S0 u
. ]' B' e! o. K. O8 [
0 G: y2 Q S& I9 z
线上的阻抗特性,我们是从复平面,平移到史密斯原图的,所以特性跟着颜色走,特性不变。
+ K5 L d% t0 q. Q- i
! O' V' P* R- {# q2 D9 x+ a. ~