找回密码
 注册
关于网站域名变更的通知
查看: 1267|回复: 1
打印 上一主题 下一主题

IGBT安全工作区的物理概念和超安全工作区工作的失效机理

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-1-16 10:45 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
摘要:本文阐述了各安全工作物理概念和超安全工作工作失效机理。讨论了短路持续时间Tsc和栅压Vg、集电极—发射极导通电压Vce(on)及短路电流Isc的关系。1 ]  w" `9 ^! L
关键词:安全工作区 失效机理 短路电流Tsc1 b! _9 j- r5 d& ]2 ]* w3 m
1、 引言
: ~9 U, L6 d: j/ ~1 ~/ @) S半导体功率器件失效的原因多种多样。换效后进行换效分析也是十分困难和复杂的。其中失效的主要原因之一是超出安全工作区(Safe Operating Area简称SOA)使用引起的。因此全面了解SOA,并在使用中将IGBT的最大直流电流IC和集电极—发射极电压Vce控制在SOA之内是十分重要的。SOA分为正偏安全工作区(FBSOA)、反偏安全工作区(RBSOA)、开关安全工作区(SSOA)和短路安全工作区(SCSOA)。
2 a8 [3 j+ e! a8 k2、 各安全工作区的物理概念
1 P/ l( T# w' `' I  v6 M3 R: jIGBT的SOA表明其承受高压大电流的能力,是可靠性的重要标志。1 o. Z! P# n$ X$ r
2.1正偏安全工作区(FBSOA)
. F! f( @* c- s% l. f  _FBSO是处于Vge>阈值电压Vth的输出特性曲线的有源区之内,如图1所示。图1中ABCDO所包围的区域为直流安全工作区。AB段为tc=80℃限制的最大直流电流Ic。B点对应的IC和Vce的乘积等于最大耗散功率Pcm。BC段为等功耗线。CD段为二次击穿限制的安全工作区的边界,此段不是等功耗。随着Vce的增加功耗下降,Vce越高功耗越低。这说明高电压强电场状态更容易出现失效。  a, y+ J( `. e9 i) a, W7 X" a+ H
由图1可见,随着脉冲宽度减小SOA扩大。这里要说明的是手册给的FBSOA,除DCSOA之外。一定脉冲宽度下的脉冲SOA,均是单脉冲安全工作区。而且FBSOA只考虑导通损耗,不包括开关损耗。所以FBSOA只适用功率放大器的A类、B类及短路工作没有开关损耗的工作状态。对于一定脉宽和占空比的连续工作,其安全工作区应使用瞬态热阻曲线的计算来确定。/ C3 B, i0 ^" h
2.2反偏安全工作区(RBSOA)
( E1 V0 q6 i% \7 |' Y9 _RBSOA是表明在箝位电感负载时,在额定电压下关断最大箝位电感电流Ilm的能力。Ilm一般是最大DC额定电流的两倍,而额定电压接近反向击穿电压。PT型IGBT和NPT型IGBT的反偏安全工作区略有不同。PT型IGBT的RBSOA是梯形SOA,NPT型IGBT的RBSO是矩形SOA。如图2所示。可见NPT型IGBT。在额定电压下关断箝位电感电流的能力强于PT型IGBT。因此,PT型IGBT不适用于电感负载电路和马达驱动等电路,而且短路持续时间TSC较短,一般不给出短路安全工作区。所以,NPT型IGBT的可靠性高于PT型IGBT。) ?- ]& N9 t; D2 G5 t8 O* J. v
2.3开关安全工作区(SSOA9 i7 g; i; [/ x# y! o7 e
开关字全工作区如图3所示。由图2和图3可见,SSOA和RBSOA相似,都是矩形的。所不同的是RBSOA只考虑关断时承受高电压大电感电流的能力。SSOA不仅考虑关断状态,同时也考虑开启瞬间。所以SSOA兼顾FBSOA和RBSOA两种状态的考虑。另外,纵坐标的电流,RBSOA是Iim ;而SSOA是最大脉冲电流Icm。一个是最大箝位电感电流,一个是最大脉冲电流。而且两者在手册中给出的数值又是相等的。现在有的公司只给出SSOA,不再给出FBSOA和RBSOA。在IGBT开启时,往往是Vce没有降下来,Ic就达到负载电流Il。在有续流作用时还要达到Ic +Ir r m。Ir r m为续流二极管的最大反向恢复电流,因此导通过程也存在高压大电流状态。
$ A" D  Y# M2 y0 P0 N3 U$ X2.4短路安全工作区(SCSOA)
0 [+ y! `2 J# S; J+ t) ]" dSCSOA是IGBT C—E间处于高压(额定反向电压)下,G—E间突然加上过高的栅压Vg,过高Vg和高垮导的作用出现短路状态,其短路电流ISC可高达10倍的额定电流IC。这和SSOA的开通状态比较相似,但ISC>Icm。在整个短路时间Tsc中,IGBT始终处于导通状态。在此状态下IGBT的耗能在四种安全工作区最大,出现失效的几率也最高。
6 b0 j: x& x- [" L1 Z3、 超SOA的失效机理
+ d: R3 [& e% W+ _: M, {  I安全工作区,顾各思义工作在SOA内是安全的,超出将是不安全的,或引起失效。由于四种安全工作区的偏置状态不同,超出SOA的失效机理也是不同的。FBSOA、SCSOA和SSOA的开启状态均为正偏,而RBSOA为反偏。众所周知,IGBT失效的主要原因是寄生SCR的锁定(Latch-up)和超结温tj工作出现的烧毁。& h; l! q. |, I
(1)RBSOA的失效:在额定电压下关断箝位电感电流Ilm时,由于关断来自IGBT发射极的沟道电子电流,寄生PNP管发射极注入到高阻漂移区(PNP管的是基区)的少子空穴一部经过PNP管的基区从IGBT的发射极流出。当该空穴电流Ih在NPN管的基区电阻R b上压降Ih·R≥0.7V时,NPN管导通,其共基极放大系数αnpn迅速增大。同时由于PNP管的集电极处于高压,集电结耗尽层宽度(Xm)很宽,使PNP管的有效基区Wb变窄,α pnp也增大。当α npn+α pnp1时出现动态锁定而烧毁。因此直角安全区是IGBT可靠性的重要标志。由图2可见NPT型IGBT具有直角SOA,而PT型IGBT是梯形安全工作区。这说明PT型IGBT在额定电压下关断的箝位电感电流Ilm比NPT型IGBT要小。其抗高压大电流冲击能力和短路能力都不如NPT型IGBT。
- O( R& Z; y- B2 c- K/ a5 a2 ]对于SSOA的关断失效机理和RBSOA的失效是相同的。1 y' \! J1 b+ G- S- {0 l1 O+ g
对于FBSOA、SCSOA和SSOA的开启状态,三者都工作在有源区的高压大电流状态,因为处于正偏而瞬间电流为DC额定电流的2-10倍。IGBT中寄生的NPN管和PNP管的α npn和α pnp均随工作电流的增加而增大。当α npn+αpnp1时出现静态锁定烧毁。+ v/ r9 x, c5 r6 l8 W4 d* u/ j
(2)SCSOA的失效:由于短路电流ISC可能高达10倍于直流额定电流,在短路时间TSC内产生的焦耳热过量,来不及消散而产生热烧毁。
: W4 _! B0 d& r- i4 e; ]例如:100A 1200V的NPN型IGBT,当TSC=10μs时产生的能量:3 L0 Z) ~3 `6 y4 y" ~; S
ESC=Vce·Ic·Tsc=12焦耳。
  w3 p" u0 o' b$ G; j% u该能量产生在P阱PN结耗尽层X m中,耗尽层中的电场ε=1200V/Xm。这时,Xm (1200V)约为200μm,所以ε=6×104V/cm。定义εm≥3×104V/cm为强电场,现在,ε>εm电子在强电场下的漂移速度达到饱和。饱和的原因是强电场下光学波声子散射,通过光学波声子散射将外电场的能量传递给遭散射的晶格。量子物理提出一个基本事实:“尽管在固体里面电子是在密集的原子之间高速运动,只要这些原子按严格的周期性排列,电子的高速运动并不遭受散射”。Si单晶片和外延片中的缺陷就是晶格周期排列的破坏。缺陷密度大的部位散射截面就大,这时,从外电场接受的能量就多,该部位晶格振动就剧烈,使晶格温度t1升高。当t1大于硅的熔点(1415℃)时,出现Si熔洞而烧毁。这就是为什么烧毁的器件解剖后均发现Si熔洞的原因。这里我们从超出SCSOA的应用为例对烧毁机理做了上述分析。对于超出SCSOA的应用为例对烧毁机理做了上述分析。对于超出FBSOA、SSOA和RBSOA一样,只要偏置电压和偏置电压对应的耗尽层宽度Xm之比大于3×104V/cm,均可能产生上述烧毁。
& r1 T% [$ _( j' {/ L解剖发现Si熔洞的面积A si约100μm2~1mm2。晶格温度为:
5 @9 B6 w7 V1 E$ B6 z9 Y( P4 F* cT1=Ic·Vce·Tsc/Dsi ·Csii·Asi·X m (1)
1 u$ |: g7 ~( k6 d式中Dsi和Csi分别为Si比重和热比。Csi=0.7焦耳/克℃,Dsi=2.328克/cm3。我们假设在10μs的短路时间内产生能量的10%让强散射区吸收,并取Asi=1mm2,将相关数据代入(1)式得:t1=3600℃。该温度已大大超过Si的熔点1415℃,难怪烧毁后的Si片出现熔洞。: r" q/ }' `1 f  H2 ~7 r. V0 p5 G
" ^% y7 B  D- S( c# d0 T, H" C

该用户从未签到

2#
发表于 2020-1-16 19:49 | 只看该作者
在此状态下IGBT的耗能在四种安全工作区最大,出现失效的几率也最高。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-9-3 14:34 , Processed in 0.125000 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表