找回密码
 注册
关于网站域名变更的通知
查看: 502|回复: 2
打印 上一主题 下一主题

对卡尔曼滤波的简单解释

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-1-10 13:54 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
对卡尔曼滤波的简单解释- G7 n7 O* Z4 z" |  |, N  h
- l* u, j1 R* u; H7 t" u( M
先给出一个网上的例子:假设 我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一-分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声( WhiteGaussian Noise ),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配( Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。& s0 `! Q" U9 j6 V: `6 m
* m, C  B, L/ N/ R# }1 \

/ Y9 E; E/ g+ X5 r: n. V3 h; w好了,现在对于某- -分钟我们有两个有关于该房间的温度值:你根 据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估
/ v5 q. }* I* N2 N* j* l# I算出房间的实际温度值。
: r5 M- M3 y. R0 q: a. n. L$ P1 N2 T3 s* i6 K/ L! z
假如我们要估算k 时刻的是实际温度值。首先你要根据k-1 时 刻的温度值,来预测 k时刻的温度。因为你相信温 度是恒定的,所以你会得到k 时刻的温度预测值是跟k-1时刻一样的,假设是23 度,同时该值的高斯噪声的偏差是5 度( 5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。 然后,你从温度计那里得到了k 时刻的温度值,假设是25度,同时该值的偏差是4度。
. z+ ], G: I3 t+ u+ H9 A: s9 ^) w8 w: J- H9 F

7 }9 i( P% K8 L7 I
游客,如果您要查看本帖隐藏内容请回复
5 z# t- M! {2 i2 Y2 V+ J
* j2 ~6 B  e* t! ]
3 l+ D! f1 }9 x5 ?
/ U. m9 S6 C! b% ^# l, p" J

. q6 I+ a& }( O: E8 j8 `7 I/ K0 N# e: y7 q6 r" I2 H4 a
6 r- N( J! {; A/ U
+ X( d- p7 k& T7 W* T+ g8 Z/ V
: [5 z; ^, Q* T. Z) j

该用户从未签到

2#
发表于 2020-1-10 17:55 | 只看该作者
对卡尔曼滤波的简单解释

该用户从未签到

3#
发表于 2020-5-13 21:21 | 只看该作者
想要下载下来
& |# G0 P" v- h  c3 ~9 M
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-7-17 07:16 , Processed in 0.109375 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表