|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
find
+ l! `, Z, X7 P& G查找非零元素的索引和值" L2 A. a# [- o0 d( F
. {' L9 K. W% E3 i0 @4 o
% `/ s2 m/ u. u: ?; c1 } Z
Syntax
7 a7 n5 C1 ^% K# }# Jk = find(X)
% p% R3 R2 y3 H6 p6 b
8 W' _; H8 C X: J; R7 w# y- P7 v3 _k = find(X,n)% R& M8 o+ I- E, Y$ O+ ^
6 X% l8 L% p( j" B9 A
k = find(X,n,direction)
K+ x$ h6 g. B! a0 j- a# e9 a F, ]. c8 o5 B: V
[row,col] = find(___)
) l9 s) |/ b& e5 V, u( t7 q3 K T" v$ M: l# L5 [. B8 f& c
[row,col,v] = find(___), y( j$ Y; U: [% o
& O: G) b0 s; _; |; _
5 \. R% ?( r; X; y# y/ DDescription
+ e8 y1 J4 K' y% u% N
9 ]' g: ~7 D! y5 Y! p& xk = find(X) 返回一个向量, 其中包含数组 x 中每个非零元素的线性索引。/ h0 w2 A- R- C& L/ W) t
: a, ]4 Z2 s: I. K
- 如果 X 是向量, 则 find 返回与 x 方向相同的向量。
: m' |4 Y7 x1 L
# Y+ _- |7 n+ A# U% E- 如果 X 是多维数组, 则 find 返回结果的线性索引的列向量。
" h/ O' k5 H+ X& A/ P" y
9 k$ j& U+ y9 T5 ^; s- 如果 X 不包含非零元素或为空, 则 find 返回空数组。
4 H2 V* ?) M, d3 U5 ^' i) `1 V
/ P1 [2 h, J" d0 ]# ^0 T$ X例子:! T/ P( b' P6 ]& L/ R/ t6 N
5 r" i) `% h0 J* M: R/ H
Zero and Nonzero Elements in Matrix
o; [; u5 E, t# c g1 L) X9 B; H' _* E; P: ]
Find the nonzero elements in a 3-by-3 matrix.( v) G7 g/ M+ j j
, r7 {& L+ P1 p1 K7 C, B
X = [1 0 2; 0 1 1; 0 0 4]
5 V8 ]( v% P3 q( _
1 y. S" d) I1 \+ x3 MX = 3×3, z6 A0 |" ]8 i. Y# v* ]
9 ~6 J j( ^ M* ]) }5 `! Z$ c 1 0 2
# a: S; k9 Y$ A7 a 0 1 1! _8 J1 Y, {+ S3 ]
0 0 4
6 s# g& [4 u3 H$ u, n, W N$ Z- @( Y
k = find(X)
$ {3 P0 j2 m4 z: G' p/ o
+ Q, k0 \4 [& b ]8 n, T+ Xk = 5×11 l# H8 s/ ?0 \/ X2 T" Z
/ U9 u; m* i. ~5 B2 e7 e0 @ 1/ z8 o' H1 l& ~: ^( g4 g
5
3 C6 H1 I' V' y$ j. M 7
9 R1 _1 Q$ L9 Z1 E2 `8 m o, C 87 [" G! t# d; W3 A0 C' S! \% L m
9
% o$ ]. Q$ U- M& A' U/ H
+ A# j3 v- C7 Q& { n' G, z, lUse the logical not operator on X to locate the zeros.
# L9 B7 _7 f+ W* ~3 h0 @/ V7 ]% w/ q
5 P( ^3 W' N& f/ m( U4 p! Ik2 = find(~X)
6 G/ @. [$ N) z+ |: s0 ?( h* D9 e* O2 ]# Y$ a' x$ E
k2 = 4×1
0 x2 G4 ?6 j! h8 e
6 i) p5 |! h9 p7 v, J 20 i- _5 k; Y7 i$ e
3
5 M( \$ d( `$ K- e1 X! Z 4
6 g$ ~ r/ A0 a# I 6( Q, J1 Q* y) r; x% X: L% a
- b: Z- l4 w- X. \; A
k = find(X,n) 返回与 x 中的非零元素对应的前 n 个索引。
! K3 V$ p2 t) _3 ]7 t
! n- U4 K. U0 D4 w5 M- N6 g, k例子:$ X6 e: U& T: s
3 P& ?# @- H$ `# W+ z& T( \
Elements Satisfying a Condition
, M' A+ h1 p( B/ k& e. ?1 K. @' P G7 q4 ~2 p" P' z2 z
Find the first five elements that are less than 10 in a 4-by-4 magic square matrix.
" J- x8 N& ~: W: Q0 f- h- Z5 t; a8 N1 a
X = magic(4)
# ?5 [: V; ^3 R* G
J4 g0 L7 g8 ~4 u9 t0 _% WX = 4×4. A! n- S$ [# U4 t" C" @
+ |* ]3 C6 ?- O: e 16 2 3 13
. b9 {, t5 _" E 5 11 10 8" K- N3 ~8 P+ n, F* N, j4 m0 ~& A' i
9 7 6 123 E. Z h6 |' H3 M
4 14 15 1
8 J* v' }* h% g1 T7 I
% x/ b! G; L# k; ^ n& h1 x9 uk = find(X<10,5)
! y$ L* W2 A/ n9 W# W, W' ^0 _
, `$ l) D( l, h3 E8 R! pk = 5×1$ X, p8 r9 {0 W, `9 u" B
) P( n; r$ t7 j G
2
' Q0 g/ L3 Z4 y( H/ D" p7 y( @) l; ? 3
! G/ x" u# \8 p/ H% g 44 _" L X9 w0 i9 i/ `% f. Y
5
' u& j' d' d5 H6 A; z# z3 J9 B3 P$ Q 7/ e, x3 Z; T: R6 ?( j3 r( l
& A: a' e- R5 T: G
View the corresponding elements of X.' Z1 B8 h* D% _* z' p
5 v; C% ?9 @( S! a KX(k)
0 x* M# e( D' H' Y* ^. Q/ b5 F( w: `9 B& T1 n# J. a3 o
ans = 5×1
}" q8 Y+ T* b! v# w1 g
$ @* U! W- P$ t5 f- z2 y1 |7 O 5
& B" c, {: U) Q 91 w( s1 j2 H7 J+ c! W) m$ R
4
a) T1 }9 l1 u 2
7 a; D8 R- @5 S$ k 7. Y% v5 x* l9 ~2 f5 d3 I) j
8 d2 z* d2 K: L# Q8 ?" K: T5 jk = find(X,n,direction), 如果方向为 "last", 则查找与 x 中的非零元素对应的最后 n 个索引。directionis "first" 的默认值, 它查找与非零元素对应的第一个 n 索引。5 y+ |# z# ^3 E& |$ D
8 _4 P7 @- F/ t" }% r例子:
4 M d& X8 G% L3 a
" k+ s6 [5 Y2 p4 m0 ~% y G% ?Last Several Nonzero Elements
1 d3 o/ ^* E& f2 h! N4 D
+ c2 N$ m" D0 x6 U* ^* s' R1 VCreate a 6-by-6 magic square matrix with all of the odd-indexed elements equal to zero.
y6 M0 i5 |$ B) M9 J1 y: X. H- V1 K
X = magic(6);
, B" a) ~) t" @/ i" ^+ J0 `6 I* R0 V, d* k# @
X(1:2:end) = 0% M# z: E2 `8 D# Q/ v
F6 |& U7 u4 T' m, P
X = 6×6
# i% ^: W: s$ P2 q5 L7 I: j1 @0 e( ^8 z2 m, U
0 0 0 0 0 0
4 ^' Y* i% ~( ^) p* n 3 32 7 21 23 25
: G4 ?6 M1 E! w 0 0 0 0 0 0
9 s7 R+ ]0 @0 S% o9 P2 [ 8 28 33 17 10 15
6 V7 K( z0 s1 M 0 0 0 0 0 0
3 v; ]' g! m- ]4 b- g( O/ ] 4 36 29 13 18 11" d! f: ~/ F$ A
, v2 k/ z# r" }" v# @- Y4 a5 `3 c/ MLocate the last four nonzeros.
$ b: Z: q2 R8 I% v4 _( x; b* U
) \- }4 v- F) nk = find(X,4,'last')7 C6 m2 d6 W1 j/ e$ z, k$ J
/ h5 L/ y4 I# E7 Z ~
k = 4×19 u6 y2 y" D/ c* u
0 L8 q, e/ x) w+ {: W# i 30
5 G( g6 L6 b4 M: v 32 \, B" `( e8 p% K$ m9 v
345 \$ [ R' z7 d* R
36; B; a5 q& c* t/ J0 y m
U) a O+ j7 j% L1 rx(k)
/ W8 w, U ^, h2 e: i9 K5 k8 w8 ^$ p+ K: T" `9 b
ans =5 b' u6 c0 p) V) f
7 o. L% V/ O& ~* D( S8 e* A
18
5 `% g; x. O+ J3 y7 S" ]3 h 25$ {$ y' F/ I9 \# u+ _5 r" g) [
15
8 \1 d8 `" @$ Q j( R 11
5 W6 [& H1 A6 O5 c( k ! c+ C4 { c) Y2 \
9 Z+ O6 O& S5 b+ y; k$ R, ]
[row,col] = find(___)使用以前的语法中的任何输入参数返回数组 X 中每个非零元素的行和列下标。( a& p7 S+ Z2 N0 d
. H# M1 D4 B" g# O
0 n& G& x+ D; B' ]# ]4 D
Elements Satisfying Multiple Conditions
1 N8 V8 U8 `$ v8 r% y
6 }- Y' n x, _" S1 y5 s. |7 G* EFind the first three elements in a 4-by-4 matrix that are greater than 0 and less than 10. Specify two outputs to return the row and column subscripts to the elements.
/ ~2 a6 Y0 J/ t5 N% L# ?8 k/ ?6 f# H( t
X = [18 3 1 11; 8 10 11 3; 9 14 6 1; 4 3 15 21]
. r, C' D; }$ b5 x* j1 V7 Y* b( T7 ?, ]' q3 h9 G- C8 W
X = 4×49 J! [) x0 \2 u
6 ~: p3 r* j( f2 Y6 @0 @
18 3 1 11
3 q7 G4 v$ \6 _: w 8 10 11 33 |/ y! n M. L, z
9 14 6 1
, k* b. f8 P4 |+ n2 }, n 4 3 15 216 q. S2 o6 Y! ~1 N) V* f7 G
7 V& ~6 s+ {( [0 Z, E; P' m
[row,col] = find(X>0 & X<10,3)1 H8 o" G3 l' K4 U/ j4 e2 R- `+ Y. U
4 {( n* c, s" n, j0 wrow = 3×1
/ t, U( L( a) u2 `4 O9 t* w! Z1 W2 p! i1 q) i+ P3 o
2
/ ~5 E+ f( a. l% `* C8 s$ j7 O 32 {$ ^3 x" w2 I
4
% ~; `8 A' p( S. B, B' a+ V4 F: N
4 U' g4 o& W" U7 H/ Wcol = 3×1+ k( \5 n8 i8 j, i2 Q6 }1 g7 r; J
; _) ?" g1 f8 ?9 X/ t1 \% C 1( f& c4 N% K+ J( T4 F
1* A( V+ _/ a: H( w, [
1# T/ E2 j% j8 @; T+ j4 ^) R
3 C+ c' n. W, R3 N9 L
The first instance is X(2,1), which is 8., x, {6 m8 _' b: K
. z: U3 v& A' n: D6 B+ d+ m3 s
[row,col,v] = find(___) 还返回向量 v, 其中包含 x 的非零元素。
, j7 x/ R- l' c" V. ^$ m( ~" N$ ]
# j/ R; M* K l s( u3 A, j& h7 @
Subscripts and Values for Nonzero Elements
# J% M8 ?( |+ f6 M" ]: M, I" v* \% s% l8 ^! H g. k- e
非零元素的下标和值
& W2 @, R S" B1 ^$ Y9 }) [2 T# N
6 g# P/ W2 [/ o1 B; Q; I) S5 W+ vFind the nonzero elements in a 3-by-3 matrix. Specify three outputs to return the row subscripts, column subscripts, and element values.
0 S1 b* X9 ^2 H
. S# U. k5 r; tX = [3 2 0; -5 0 7; 0 0 1]* Q5 [4 U. B6 I* J* G
- r& x: t Q" k+ e/ p4 ? S
X = 3×3
: K7 T/ `. P8 V" v9 l6 ]1 d* z; p. L6 B: P7 v
3 2 0
2 T3 ?/ h/ ]3 Y+ u -5 0 72 e- [% P+ \" Z3 p4 u
0 0 1
' V u7 I8 `* Z' F$ G- q+ Q4 [! Y5 k' O$ |- o, a4 `1 y
[row,col,v] = find(X)
8 w/ ~4 a- E3 d& Y- `2 H+ M# C# j3 o4 ~. i9 s; Z
row = 5×1
5 @) `( X+ U/ ]+ F( f! I5 M5 _% L8 T& C5 @3 w# @4 D4 l
1
5 E& \7 U' @3 L8 R; D! F$ G$ d 2
) n: f9 j4 a# z 1
2 v+ i2 b* J: G, w 24 z! {: @4 g) J
3' E) `, P0 }% G/ Z/ W4 L! S$ w
, ]$ `# z7 s7 v5 wcol = 5×1
0 ]' G, m8 Z3 a: d. {
1 K! d6 ] \' @7 z 1
2 Y2 J# J, a Y 1. j/ n2 U2 @) Z K
27 t! E* r+ j- W6 U7 X6 y5 \" q
32 t1 a1 ~+ }8 W7 E
3
# }3 K. }. Q) o9 J
( y6 N) m: y0 ~) K- G. j) \- Fv = 5×1
3 K$ j9 @& o6 Q* A& l" J$ a5 r' @; M/ u v. L6 U# ?
3/ s+ g2 f' D- w0 \- b" X/ A+ b( l
-5( ^7 _% p! ^) u. `3 s" ~) A
23 w) T* Y- H' w1 `$ Y6 g& y8 `
7
; v1 y6 M9 x6 p 1- F2 o4 R/ T1 Q
, E& A* a' s. J7 t
0 F& G+ w; D P2 a* ?) j3 r( [/ _7 {
Subscripts of Multidimensional Array$ ?# i6 Y* g: p8 E
+ u- m# O% r2 G$ [) h6 ]8 {Find the nonzero elements in a 4-by-2-by-3 array. Specify two outputs, row and col, to return the row and column subscripts of the nonzero elements. When the input is a multidimensional array (N > 2), find returns col as a linear index over the N-1 trailing dimensions of X./ v1 }( r8 L% O
! S5 t* n) a& hX = zeros(4,2,3);/ f7 o: A8 H( e }( H& S. _
) _) U1 B$ J# j, N4 i% YX([1 12 19 21]) = 1
, G* Y' y, B' f: c4 t6 Q
e1 @, b4 `* N, V, K; KX = , J, U; F, F% V
% `% p# O4 B. a/ v% T. mX(:,:,1) =
+ E6 t; L# R$ N! p W$ G4 h# U: J# L
/ g1 ]; i6 X9 p 1 0
. b1 U4 Q5 |9 M0 k9 @5 r. B 0 04 K6 I7 c _- u' f0 I3 I! w
0 0( z+ r* y: h- ~, _/ t
0 0: p9 q3 t, C0 X6 u# z" B/ D
" S$ {8 d; q" j) n8 A5 X! B7 [% w* O6 t
X(:,:,2) =
/ ]* A+ @4 X1 H3 P, u! _; K* s, u: D8 H$ h- i# q$ F
0 0
0 d, {4 v! c2 O3 |1 c 0 0
1 ^9 D% I6 B9 l% w. L 0 0
8 b' |6 F" y) t6 D) g( K' z+ v. N 1 0
- P7 U7 E0 c8 ~. F6 Y$ }& C. ]8 q% N
) G$ m% E! W! f" z) GX(:,:,3) =" Y6 U1 X2 b# z
. v/ M+ L5 d5 Z
0 12 y1 l& v, q' T! \( e& P
0 0
5 K' U. }# A( ?- w! N8 S 1 0
1 z5 Q8 P( k) k. Z8 M9 t) q 0 0
( [4 G- D) U, G9 j
/ P" y( e0 P. X) ?8 U" c[row,col] = find(X)
! z* F3 E% a- I, ^, i3 n8 g7 s6 ^+ Z
! l; C- w4 F0 Brow = 4×1$ i. ` s! s- X- N) m0 O/ l& ^* k' ?
2 D# G4 T L, v4 q
11 W$ w( G) A6 T+ X+ z# ~
4
% F9 r7 t7 V3 c" m2 E2 A 3& @3 z" Q& S/ H
17 _) Z5 C, G1 b6 z9 @) ]
+ v2 y' V+ R2 _$ X1 W
col = 4×11 b" k. \! p' K% Y& }. N1 K1 ]
; X; W% X$ U2 \2 @ Y7 N 1" W; `1 ~9 c5 g# b4 N4 V
30 Y6 }1 N: F0 N9 x
56 q+ d: }7 a, q5 N' N. Q
6. Q- ?3 l; T ^5 z
) N, _% h- I& |& l9 L
$ {5 r/ c+ S; n最后介绍下线性索引:8 ]* E* s- ~& j3 Z/ t
! J( j% n2 F: t" j [" v
0 r' b3 g' W2 F) l
线性索引允许使用单个下标索引到数组中, 如 a (k)。MATLAB®将数组视为单个列向量, 并将每个列附加到上一列的底部。因此, 线性索引将列中的元素从上到下、从左到右编号。 E m8 y- @% I$ t1 T
+ ?$ H) Z6 {/ @- d例如, 考虑一个3乘3矩阵。您可以引用 a (22) 元素与 a (5) 和 a (23) 元素具有 a (8)。线性索引根据数组的大小而变化;a (5) 返回一个3乘3矩阵的不同位置的元素, 而不是4到4矩阵。
" i1 I3 j$ T8 F5 J! u) ]. H( S
# {% ?$ z. A$ L. I* Gsub2ind 和 ind2sub 函数在下标和线性索引之间转换时非常有用。. T/ A! {# V+ U' m ]* n+ J
* f8 _" R ?4 `4 J8 F0 r
- X; q" O: s1 g6 X
' X0 |. M. b9 F5 ~3 Z* s& V7 k9 T+ }; ^. Z
|
|