|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
" {. g5 r9 F5 ?& g; P0 C
norm
2 H" m' h: X+ a# s# dVector and matrix norms$ ^$ ?" p C& V2 K5 M% j
8 ~3 |! J4 R" z, SSyntax1 e1 w' ^$ D/ {3 U: I( j u
1 ?9 F* b p. |# ^! s* hn = norm(v); @- o1 }' F9 m. D) | q3 B
/ C0 h4 q4 G$ q dn = norm(v,p)& n& n0 h8 z5 J1 `# ]5 K; l6 ]$ h
/ z7 T) u0 J' y; L5 V* x
n = norm(X)
) `& T$ c, h V+ J3 A! e; a/ ?% D6 ]; n1 V: b1 a4 I: c
n = norm(X,p)
& X4 `5 H% ~' _, y& X
' K6 F1 B, T: d' Bn = norm(X,'fro')
* N/ F8 g$ s7 f+ A8 a( H% D6 T6 q4 K) R
! @7 Y N( y: P- f# D9 z( bDescription
+ U0 e }/ e9 e2 F! Z& e V% l8 K8 l
n = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。
' O6 ^, I4 o8 R$ A4 y" e
8 i# v5 S& p6 ]n = norm(v,p)返回广义向量p范数。
+ D" i, J* a# \5 F
0 I% U' Z2 t6 A- b& Dn = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。
4 I1 u: S$ H2 R6 ~9 z0 d8 a# H
7 ~! M+ |8 P4 R" H7 n! R- on = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:
) U% y( u. m" @7 A# b( y+ b# L& s
( T$ B8 y# j, x7 B3 M: h& f- 如果p = 1,则n是矩阵的最大绝对列和。
- 如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。
- 如果p = Inf,那么n是矩阵的最大绝对行和。$ P2 I& }1 \+ F8 @8 }" K% u j; ~& j
; O. [, t* B' r% _4 \+ q' _! w
n = norm(X,'fro')返回矩阵X的Frobenius范数。7 `7 L6 e& d' w3 B9 `* B
( A$ ]" K- Q+ a有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识
9 z- I$ N: Z1 {1 g5 D& M. }* K3 z) I4 k% a
下面举例说明:" _2 q' q! C, H9 w. i" ^
0 s$ E: B" s3 n2 h! Q
Vector Magnitude(向量幅度)
7 [2 T5 k. z1 ?0 [8 f, G& e' X& G# E0 N/ Z& I ~; I3 B! Q# `
- %Create a vector and calculate the magnitude.
- v = [1 -2 3];
- n = norm(v)
- % n = 3.7417
) ^& b' O, i8 h6 p ! J6 F8 I/ J* O
; g1 m& P; t1 |% ~
1-Norm of Vector
# B% f- a& C% w2 `! s( g8 c. T
$ N6 o4 O. h- m" ^9 d- clc
- clear
- close all
- % Calculate the 1-norm of a vector, which is the sum of the element magnitudes.
- X = [-2 3 -1];
- n = norm(X,1)
- % n = 6 J3 v/ H: V. m N
7 `* B$ }1 e1 _" n* H) K+ wEuclidean Distance Between Two Points ]9 D) e z% K9 ^
5 B/ x# ~( X# K: G2 V$ |6 M2 k" F- clc
- clear
- close all
- % Calculate the distance between two points as the norm of the difference between the vector elements.
- %
- % Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.
- a = [0 3];
- b = [-2 1];
- % Use norm to calculate the distance between the points.
- d = norm(b-a)
4 X: e0 F5 Q* P
2 y5 i3 O- ]% O* M. jd =
1 S, ?1 i( c/ {3 v7 S& t! z. u3 ?" J9 U; X3 B) z5 O
2.8284
) q5 @2 j5 y0 B. ]6 p% h9 Q
! D" [6 Z- m# @7 f% B: u1 J$ Z几何上,两点之间的距离:3 y- Z/ K ~; T9 P
, m( Y6 a1 w" }5 V* l% Y) Y
: E% d3 X" G( k, o9 r& ]' z
4 s5 {$ a- [- \" A, [. H% R8 _! y
* L9 a6 M/ ]* C2 @3 L; n2-Norm of Matrix2 o6 F; c# T! i2 X: x A" w% _
/ ^; A; V' y3 v2 T r. N- clc
- clear
- close all
- % Calculate the 2-norm of a matrix, which is the largest singular value.
- X = [2 0 1;-1 1 0;-3 3 0];
- n = norm(X)
- % n = 4.7234, W' c [. R/ Y
$ `. n* X* l; ~& }( q) e
Frobenius Norm of Sparse Matrix% h* c+ ?$ g- W' z
5 f f' i3 _, ^' T- ]: o$ @
% W# ]: B7 d5 j" D
- clc
- clear
- close all
- % 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。
- S = sparse(1:25,1:25,1);
- n = norm(S,'fro')
- % n = 5! h# \$ a8 w0 v: m2 s. b7 u
1 {( C }" X+ z( j. j# i6 F
9 }5 ~7 K6 l; Y" h; @
) `) ]4 O2 U& p( E0 u |
|