EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
6 N3 A6 _! ~& q7 l3 q- x/ H案例分析 Inverse Transform of Vector Padded Inverse Transform of Matrix Conjugate Symmetric Vector " t; R. q4 n5 |7 F3 t1 r
2 f' W, ~8 J1 w8 v0 b1 N
案例分析
0 F6 J$ @. t0 \+ V P) [8 xInverse Transform of Vector$ I" A' n- r' \% }* W
9 O+ p7 I( A9 M7 V; ~' y& J, N
- % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.
- %
- % Create a vector and compute its Fourier transform.
- X = [1 2 3 4 5];
- Y = fft(X)
- % Y = 1×5 complex
- %
- % 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i ⋯
- %
- % Compute the inverse transform of Y, which is the same as the original vector X.
- ifft(Y)
- % ans = 1×5
- %
- % 1 2 3 4 5
# m8 H: n3 h# H" i2 d) V) U : [% L X6 }+ ^5 A; Q) d
8 l7 a$ w3 I# h6 L. @4 b
2 Y4 o7 r; G0 k* G8 ?
1 k K% R! @% G7 E6 ]9 A结果如下:
- g# H2 n9 H- |- |$ i+ e& z& |& Y1 h3 [1 ^7 \1 C; g& K
ifft_vector
$ y$ m. ^! u( r. f. t. |3 c# b
Y =
8 V( A% l! F3 w, g7 p6 d1 I
$ h0 l6 `. f& M- e2 [3 S 1 至 4 列
, D; b6 m! h3 f2 u3 a. a( C) u, R: }, o$ q, m
15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i8 O H5 \" _" b6 ~
& R# L# h5 h0 ?
5 列
9 j$ O$ e4 V/ }) ]! i) V. z; H- v! A! ~% q# X
-2.5000 - 3.4410i
8 J% @8 g& ?9 \9 t# E1 g4 i& j$ x
: P& T) u3 q( s: J0 b% Vans =- D9 k+ |, ^1 m5 U. w
X% M; C, z3 Z
1 2 3 4 5
# ^' b1 I3 P2 J0 f( d
0 p5 w+ P5 ^+ x3 n7 G- P4 _. V6 b4 U$ m6 ^2 F, C" Z( H( f
Padded Inverse Transform of Matrix
- Q8 H, c% v* |+ j# Z- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n,2)
- size(X)
. k4 g8 G' A; s5 v+ G4 s3 i6 o# o R2 b' t5 h8 o
9 ?$ Y: E$ f! D* R1 L! a' f7 L k+ Z" W1 Z% m
5 d7 w" ^5 D( r' G& i2 q+ c! ?结果如下:
6 M0 j6 H1 u: B% f' d. S8 L" `+ o: t% L, P5 K( S
Y =
+ i9 ]1 R$ i3 U3 }& L1 B
^: {+ T7 T2 W$ _! v8 h 0.8147 0.9134 0.2785 0.9649 0.9572
# y2 f d* _; S0 ^' B 0.9058 0.6324 0.5469 0.1576 0.4854
8 g+ F4 E, ?* B O+ ^ E; }9 m 0.1270 0.0975 0.9575 0.9706 0.8003" W$ P" M9 c" N5 `" P6 x3 h
6 ~" ~8 o3 _( p1 p
X =
. L% A7 Y) \, U0 c' \& Z* g. M; i+ c
1 至 4 列- _* W" Y/ R ~" q* ]: x
* }& u! f7 e \# w7 m 0.4911 + 0.0000i -0.0224 + 0.2008i 0.1867 - 0.0064i -0.0133 + 0.1312i( C( Q* t3 ?0 x/ {
0.3410 + 0.0000i 0.0945 + 0.1382i 0.1055 + 0.0593i 0.0106 + 0.0015i1 H( Z/ ? ]1 G9 A7 ^2 Q
0.3691 + 0.0000i -0.1613 + 0.2141i -0.0038 - 0.1091i -0.0070 - 0.0253i4 c, ]- q: U/ X6 r( F) Q0 Q. ?: T2 m
% y$ q4 o) F% I A- U- U 5 至 8 列, X: {0 s2 C2 H; d. I t& f
) Q, j! b/ e% H* @3 B2 c) z
0.0215 + 0.0000i -0.0133 - 0.1312i 0.1867 + 0.0064i -0.0224 - 0.2008i& R. g8 e( {7 F: Z
0.1435 + 0.0000i 0.0106 - 0.0015i 0.1055 - 0.0593i 0.0945 - 0.1382i+ T: ? G; m" Y8 H
0.1021 + 0.0000i -0.0070 + 0.0253i -0.0038 + 0.1091i -0.1613 - 0.2141i
, C. K" a7 @7 _3 D6 M( D4 I3 P, {$ Z' x+ }' ?1 R, \' x
ans =/ e+ J% T6 g- T
4 i/ D9 U9 @" s3 e+ o3 U3 T0 c
3 80 } n5 s7 K: t. W- Y" N
; f: F- g6 X0 H上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:8 i7 j! Z( n% n; [" `6 |# V
" c" V; c, b2 S! q9 |X = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:
5 x5 F( L) k& e9 x3 x. ^
5 m+ \2 @8 g0 \- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n)
- size(X)
8 V, K+ U0 B& R5 ]1 M " P1 f; U% t, U0 V
; f8 O) T; Z6 w1 R9 f7 Y0 B. J8 lY =
1 S- ~% |' Z" A8 H# A0 d4 \- t* ]3 _2 e1 l! z; j( [
0.1419 0.7922 0.0357 0.6787 0.3922
9 L! M2 T) k! i7 R5 G& d 0.4218 0.9595 0.8491 0.7577 0.6555
5 N# I5 _ p: s8 i+ e 0.9157 0.6557 0.9340 0.7431 0.17129 u$ ]6 o+ D$ d8 w% E
6 w3 ] e/ Q( \) yX =
; z4 k+ M. h+ ]6 i3 a4 ^( s, k0 q' N) W1 g
1 至 4 列$ t- j9 t7 J& Q" \: g! Z
& K3 L8 S6 P7 \) C! M6 I0 b$ A
0.1849 + 0.0000i 0.3009 + 0.0000i 0.2274 + 0.0000i 0.2725 + 0.0000i" G: p5 B9 L W# l* y* ]4 w
0.0550 + 0.1517i 0.1838 + 0.1668i 0.0795 + 0.1918i 0.1518 + 0.1599i6 g6 g6 j G i3 `1 j/ I* r7 z
-0.0967 + 0.0527i 0.0171 + 0.1199i -0.1123 + 0.1061i -0.0080 + 0.0947i
' y) R- b% X* k% m8 c, U5 |4 ]" n -0.0195 - 0.0772i 0.0142 + 0.0028i -0.0706 - 0.0417i 0.0179 - 0.0259i) \5 o4 D$ L9 M4 O( r3 q: A
0.0795 + 0.0000i 0.0611 + 0.0000i 0.0151 + 0.0000i 0.0830 + 0.0000i7 \( j% R: X* d r/ w; Q! r8 I
-0.0195 + 0.0772i 0.0142 - 0.0028i -0.0706 + 0.0417i 0.0179 + 0.0259i
2 ?+ G3 q" W. w -0.0967 - 0.0527i 0.0171 - 0.1199i -0.1123 - 0.1061i -0.0080 - 0.0947i/ z: C% v+ j6 E2 b; q& d" R7 \$ Z1 Q
0.0550 - 0.1517i 0.1838 - 0.1668i 0.0795 - 0.1918i 0.1518 - 0.1599i2 C+ M) O7 z) v( w
' r8 L% h" W* b% B6 S 5 列# G, C% p: R! \: y3 }- ^( O
7 P% ]5 p/ {; m5 l+ M( q+ V* D
0.1524 + 0.0000i- d8 L8 Z/ t" ^. G- m! B% Q" u4 L
0.1070 + 0.0793i
) D% d. C: @4 z 0.0276 + 0.0819i3 k$ p5 }* f7 i+ r1 n
-0.0089 + 0.0365i
/ b3 o( q1 I, f -0.0115 + 0.0000i
- l, ]. j/ W8 `( S" r' X8 z -0.0089 - 0.0365i% N; A( p5 b* m; p, }' U$ I
0.0276 - 0.0819i
" _$ ^6 j+ N3 \6 ?- y 0.1070 - 0.0793i+ C4 \! K7 }/ p5 r& W% H& m
( Z, t( t$ a( w9 y- jans =
8 T) L8 z3 R& \( i, J: A/ @+ j
, E/ T8 ^9 i9 G9 _; u 8 5
* C- c, E% R. X6 Q , \' z" H) z. U$ {+ _/ ~ n, f
/ H1 D( L: I9 `/ B
Conjugate Symmetric Vector
6 |$ x" N4 O! z- Q) ^3 J$ C* m/ P2 O K9 b
For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- ^0 T! x1 b9 W& c% y5 ^/ kwhich also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.; X- n6 t3 n3 r. M7 R1 e9 [ c
- [" w5 j: d( U/ C- H' f: q$ V Y3 zCreate a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
4 j; E1 f& _4 uThen, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.7 V$ D! j, m/ f! L$ E
5 s' c( N8 z( R& T' j! E6 p对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。
7 _" [" r" U: Q, v: a) u$ s' ~# f
% L" d7 I8 `3 c( x N创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。
) |, |" P) C; `7 C1 |
1 s; F c E4 M; `1 P! i; y- clc
- clear
- close all
- % For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- % which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
- %
- % Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
- % Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
- Y = [1 2:4+eps(4) 4:-1:2]
- % Y = 1×7
- %
- % 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000 ⋯
- X = ifft(Y)
- % X = 1×7 complex
- %
- % 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i ⋯
- Xsym = ifft(Y,'symmetric')
- % Xsym = 1×7
- %
- % 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213 ⋯4 E0 q# |5 |& Y: Z/ U1 z
! v" ~) u9 s. \9 O2 A
' D6 K, c# m7 a a: d$ N. D3 q$ ^( @
* p* `# z% ?: f% ~6 j
" i, Q1 N# I" c6 ]结果如下:
5 q3 ?: H3 C. C/ }9 h; H) C& f1 D+ P# H! f6 X8 l4 |3 X) `' e
Y =7 Y; G$ i' V( n1 O4 O% ?7 L
& f" x% p7 ~) D4 c% j 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000
% Z/ q: ?" A+ ~* \/ M2 s7 T1 ?
X =
5 `; A7 w7 B2 [9 m+ f; W
& K, R7 q& C. s0 s1 b) e+ o 1 至 4 列& G/ ]+ _ L! l0 }0 J& |
3 h4 }, ]4 Z0 Z4 ^* E
2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i
3 V/ a [ e3 T. m- L# T' K9 }% b9 r: m9 K3 @* Y9 T
5 至 7 列: E7 X. A. d* c9 i7 y2 }
9 x* n" a b* k6 _2 ]5 }
-0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i
" \8 u+ B& _/ U. \5 |% P
9 {! {: b, m1 D8 @6 ?Xsym =1 E Y! Q* u) j5 }7 \: }* N
) h$ R; r! J* M: F 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.72138 R( _2 w! k0 v5 r' t: X; p
5 u5 y8 F8 Z1 u& C+ M* x
2 l& M, K" _. B. U+ ]6 ]
6 K( A- H1 r7 ~+ F e: w8 d0 d: j9 B: T6 r3 r$ S3 H# \% w
) u6 M+ z Z7 s- v3 `+ M- X# H1 G9 l! w
; T. U7 G: k9 @+ z$ t. T" J4 J/ {* n/ n4 k
1 R; z2 J3 G) D/ u3 J |