EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 mytomorrow 于 2019-12-10 10:08 编辑
/ |$ J/ g1 H2 `. m6 V1 v' Y; Q4 D& `$ D2 U& y
目录 ifft Syntax Description
9 y: D. z) h! |2 h, P
; V: p& s* p' {: y0 \7 @
ifft % B' L, x4 L8 w0 w5 F8 z% C! R
Inverse fast Fourier transform * k$ B% C. m/ h# m# Q# h
6 r7 r5 W2 S7 I+ M; q
Syntax
# ^5 G2 W# I* K8 E) p7 @$ o( F
X = ifft(Y) E3 n! W9 c V& y1 U% N
X = ifft(Y,n)
( q2 I5 U2 v! j1 s- A2 m
X = ifft(Y,n,dim) 9 \; i( r0 s* o- v- G
X = ifft(___,symflag) $ d* P, {# ?7 k4 h) h
# r, |2 n, A( w* O/ ^8 {
Description
4 @& w$ K" l! _/ Z" j# H& P+ p
X = ifft(Y) b( U, F$ d+ v6 b5 w
X = ifft(Y) computes the inverse discrete Fourier transform of Y using a fast Fourier transform algorithm. X is the same size as Y.
. Z% E1 e, W' N. Z9 K3 Y& u0 n
- If Y is a vector, then ifft(Y) returns the inverse transform of the vector.
4 j% [' e0 Q) a* m8 Q6 w! z
3 e; A( v! G% f
- If Y is a matrix, then ifft(Y) returns the inverse transform of each column of the matrix.1 T, O" c0 p; _8 [
+ j* [ O6 M& y( q! \6 ]$ c
- If Y is a multidimensional array, then ifft(Y) treats the values along the first dimension whose size does not equal 1 as vectors and returns the inverse transform of each vector.* t2 Z: P3 B( L6 @4 u9 G
y7 }) U2 B G3 c5 c- j! {
本想翻译一下的,但是手册里面的英文描述的太清晰了,单词也很简单,所以就这样直接看吧。 $ D" @: R, H: V7 s% V1 G( u
X = ifft(Y,n) returns the n-point inverse Fourier transform of Y by padding Y with trailing zeros to length n. ' p( K0 O/ o4 T+ a
X = ifft(Y,n,dim) returns the inverse Fourier transform along the dimension dim. For example, if Y is a matrix, then ifft(Y,n,2) returns the n-point inverse transform of each row.
; F0 C8 _. c7 {$ J9 |8 e
X = ifft(Y,n,dim)沿维度dim返回逆傅立叶变换。 例如,如果Y是矩阵,则ifft(Y,n,2)返回每行的n点逆变换。 * R* d0 Z& p9 m/ g J: W
X = ifft(___,symflag) specifies the symmetry of Y. For example, ifft(Y,'symmetric') treats Y as conjugate symmetric.
* \/ i4 I8 T( v5 K
X = ifft(___,symflag)指定Y的对称性。例如,ifft(Y,'symmetric')将Y视为共轭对称。 j4 I& x: K& ^. t/ Z: l( ]5 u
9 {1 [) T4 m! }6 u5 r+ h
2 m. p f1 r& P$ P7 t* D% \0 v& g* \5 r5 @
|