|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
, k* x3 A/ a& O7 U7 `$ I# `, E
上篇我们讨论了:MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)/ N5 a# f5 D- i- Y) T3 z! a% [
+ ?% N g! K1 b可是还是觉得不过瘾,还有下面的情况需要比对。于是就有了这篇。
# S, b) m2 `; p) Q+ G9 p4 }& [9 x
8 t6 H2 d! }5 w. d案例:
8 R2 A5 k/ q1 t9 M6 R5 C2 g
# {9 Q0 J. t: v% }( l
- Z# P: a& _! T
3 I* j+ o' C2 {1 p# A" _
想要基于有限样本数来确定他的频谱。
/ n% b0 P- E4 c: w0 ^. T0 L& y4 T
下面我们分如下几种情况来分别讨论:' U: _, P, |/ w" h. c) L" x+ v5 V
8 \, f4 p4 `3 p& R$ k! La. 求出并画出
的DTFT;( N( y% h( r; p* ?, Y7 c
3 C6 [7 h/ F$ D
b. 求出并画出
的DTFT; A9 o2 T$ U" [/ v3 M" _& N
: F) E4 ~- V0 b: ~# ]. _! c, \- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,2,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,2,2);
- % stem(w1/pi,magY1);
- % title('DFT of x(n) in [0,9]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- % hold on
- plot(w/pi,magX);
- % hold off
- subplot(2,2,3)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,2,4);
- % stem(w1/pi,magXk);
- % title('DFT of x(n) in [0,99]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
- / ?7 y! r/ x! x9 i! F
& Q. g+ d. Q; p. V2 y. X8 n
5 m: F' _* ?! I
/ h |: f# r- L1 ]) ?- D/ ]9 a) H; A
$ a/ y l6 ^% x: [( G可见,b问这种情况,拥有x(n)的更多数据,所以得到的DTFT更加的准确,正如我们所料,频谱在w = 0.48pi以及0.52pi处取得峰值。而a问中的图就看不出这种关系,因为获得序列数据太少,已经严重影响到了频谱的形状。
, g3 P) I+ o; B# K$ E/ `5 {& y" G% v/ N; `2 n& w* w* y
/ S3 {1 B8 z7 b' L; Y2 z0 X0 {3 X" j. H3 ~- _0 A/ x- ~
; j( F r6 L3 Q1 C3 K
. u" ]+ A- C. E0 ~
@1 b# y, d8 X. |; K1 j: c6 ~+ X7 F: B
|
|