|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
2 m4 x. B+ A/ p$ f& O! @
上篇我们讨论了:MATLAB ------- 用 MATLAB 得到高密度谱和高分辨率谱的方式比对(附MATLAB脚本)0 c( T! L' V# F B* m, {
5 E- k( l! X9 T1 ] E# l/ M
可是还是觉得不过瘾,还有下面的情况需要比对。于是就有了这篇。: l8 }, W5 K+ V1 A6 U ^
! b$ @5 [# D8 y( `
案例:
: F+ i i8 i$ w+ k7 G" l, Z( x7 \: m: E9 E; n0 {' N
- p! M5 N6 I Z) s4 `/ n7 O) X( K; W( ^( P
* V9 r7 X" A$ c& x5 ~* e
想要基于有限样本数来确定他的频谱。
4 _, t9 {0 B3 ?4 W9 y' K s4 |: R& n% y
下面我们分如下几种情况来分别讨论:
. C- B1 p; b/ N6 |7 }4 S/ b( T
: K* B' H( y# Q2 ~ Oa. 求出并画出
的DTFT;9 V& i0 m' X* K8 r0 V6 I
- S7 R8 E+ n) T H7 Hb. 求出并画出
的DTFT;6 m; m0 R' ]0 p* j" O% C
+ N& K. ]+ E; d% u8 N1 M3 {2 ]% U
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,2,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,2,2);
- % stem(w1/pi,magY1);
- % title('DFT of x(n) in [0,9]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- % hold on
- plot(w/pi,magX);
- % hold off
- subplot(2,2,3)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,2,4);
- % stem(w1/pi,magXk);
- % title('DFT of x(n) in [0,99]');
- % xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off
6 ]/ H' a! r5 }; K( j$ c/ p , M+ K3 o+ @+ \, A, l2 J
5 c% ?" N" T1 R- K) W+ ?
7 F4 [) r# l5 O0 c, l% v
( g' ]3 ]4 S5 \, ]1 r
可见,b问这种情况,拥有x(n)的更多数据,所以得到的DTFT更加的准确,正如我们所料,频谱在w = 0.48pi以及0.52pi处取得峰值。而a问中的图就看不出这种关系,因为获得序列数据太少,已经严重影响到了频谱的形状。" y/ ]2 F; ?6 @
$ X5 M8 B' H5 V3 q2 v: R
3 S1 d5 F( B, @1 ]! r7 s/ F2 ]* C# Z: O8 G# @9 ]
8 l6 G0 F7 [8 u) y! x: b+ K0 S' _3 M/ f% j& ?2 `; S3 }' T: Q
% H0 u }5 [) [% v/ t* q* r
|
|