|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
MATLAB ------- 使用 MATLAB 得到高密度谱(补零得到DFT)和高分辨率谱(获得更多的数据得到DFT)的方式对比(附MATLAB脚本)/ [# K$ `& J, R! A& m& d# v, y
! D7 |& Z6 `" |- T. R
4 d- U5 {) ^3 R上篇分析了同一有限长序列在不同的N下的DFT之间的不同: MATLAB ------- 用 MATLAB 作图讨论有限长序列的 N 点 DFT(含MATLAB脚本)
; f) e' s4 q6 j* M那篇中,我们通过补零的方式来增加N,这样最后的结论是随着N的不断增大,我们只会得到DTFT上的更多的采样点,也就是说频率采样率增加了。通过补零,得到高密度谱(DFT),但不能得到高分辨率谱,因为补零并没有任何新的信息附加到这个信号上,要想得到高分辨率谱,我们就得通过获得更多的数据来进行求解DFT。
) | O: N. U! D! D/ H7 ^6 m( u" R% D. O
这篇就是为此而写。1 K2 y% z" u$ b1 b
% C: u3 f3 d: B% Y! ?& m, P" O$ g
案例:
% v8 x' J; g8 q( f, t* V' q1 z$ g9 O a1 E: `
9 e( {- d6 _' v9 S" j! h( m8 y
* G m7 p( A) N. @1 l& T
想要基于有限样本数来确定他的频谱。2 y g, E* Z0 X: u3 S: N
$ Y! J! `: { J5 [ {下面我们分如下几种情况来分别讨论:
) [% V! y6 p T# O" ~, H
3 v; U. ~% P6 j g& c7 ba. 求出并画出
,N = 10 的DFT以及DTFT;
$ @$ m6 z9 a+ h; o/ ~3 W7 @7 {6 `1 Z4 G
b. 对上一问的x(n)通过补零的方式获得区间[0,99]上的x(n),画出 N = 100点的DFT,并画出DTFT作为对比;% h% E) ^/ d* k& a9 G% q# @
# \, \* _8 J4 [2 s1 p3 G. jc.求出并画出
,N = 100 的DFT以及DTFT;
+ m! j8 H) C7 C% X' p: K* Q+ s7 V. f1 N' R% T1 b
d.对c问中的x(n)补零到N = 500,画出 N = 500点的DFT,并画出DTFT作为对比;6 F! z v+ l) s, S! M& b N
8 |2 {1 H5 |& p+ ?) G+ ]* E- _
e. 比较c和d这两个序列的序列的DFT以及DTFT的异同。, O# i/ h) c8 f
' [, S& V6 Y, `8 F- K0 c& h6 J那就干呗!
* B, t" c( @0 a1 i. ~
" l. A- U: b9 R7 b+ z" m8 x" f题解:) M* X3 H p6 D$ R8 M- g
" W. P- w( ~- }$ J
a.1 z" z0 _; c# ?4 X% j2 l$ F# P. Z
s9 R# E8 x5 M7 Z% {
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- n1 = 0:9;
- y1 = x(1:10);
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 9');
- xlabel('n');ylabel('x(n) over n in [0,9]');
- Y1 = dft(y1,10);
- magY1 = abs(Y1);
- k1 = 0:1:9;
- N = 10;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- magX = abs(X);
- hold on
- plot(w/pi,magX);
- hold off1 X3 v) u" o+ L' f! n2 D
2 j% S! H0 x' |: n* {9 C
4 [+ f% D/ k) ?: S& j
. W O; u6 M' Q% m( b& s' ]& ?% Kb.
0 _8 M* b2 @% U6 i0 n, N- x5 \
7 T, I# Z: c9 ~" z# z" }6 e+ Q- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % zero padding into N = 100
- n1 = 0:99;
- y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n1,y1);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Y1 = dft(y1,100);
- magY1 = abs(Y1);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magY1);
- title('DFT of x(n) in [0,9]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = y1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
7 l3 L0 D# F! R' w+ e! c0 M
, q& P. J) w o8 x+ w
1 W; F3 T- O$ `; E
6 c# X$ k& d( k( ?0 S1 Z% l2 p
c.
0 G$ R8 c6 Z, t& y6 Z: O( Q3 x5 m i# [5 a6 b3 i
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- subplot(2,1,1)
- stem(n,x);
- title('signal x(n), 0 <= n <= 99');
- xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- ' j. i9 o6 c2 w. K0 o
: A( o2 p$ a0 t( a( v0 u
0 c$ Z) X7 y3 o7 K% E1 J
8 A( a% C( g; _: W, Y$ P
4 }6 [$ S8 {3 O太小了,放大看:) L, a( K) U3 S: h3 }4 U
6 H1 S* ?" _; p; }* V4 M
, H" o* @3 x5 K# p! R% N$ ~: Y! z J0 m/ r0 B& l$ U& D Z7 v
! K# n/ C6 u+ c+ }1 @1 T
: P6 f5 l# l9 i B; Z. dd." `2 C' v! u7 M& _% P
' g# Y K5 l2 y9 c+ p, a
- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,1)
- stem(n1,x1);
- title('signal x(n), 0 <= n <= 499');
- xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- subplot(2,1,2);
- % stem(w1/pi,magXk);
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
. b$ ?" ?: O8 m3 T ( M& s* `6 W* k0 W9 H) `* l
# I, E- A$ ^+ y: f& d, U! G, _0 d" J
$ Y7 l/ d4 o. D8 ^1 N: e7 L
, I8 I4 r6 s K* @e.9 h/ K j1 y4 |/ y
2 v1 F) `) f: N' m! u- clc;clear;close all;
- n = 0:99;
- x = cos(0.48*pi*n) + cos(0.52*pi*n);
- subplot(2,1,1)
- % stem(n,x);
- % title('signal x(n), 0 <= n <= 99');
- % xlabel('n');ylabel('x(n) over n in [0,99]');
- Xk = dft(x,100);
- magXk = abs(Xk);
- k1 = 0:1:99;
- N = 100;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,99]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x*exp(-j*n'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX);
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off
- % clc;clear;close all;
- %
- % n = 0:99;
- % x = cos(0.48*pi*n) + cos(0.52*pi*n);
- % n1 = 0:99;
- % y1 = [x(1:10),zeros(1,90)];
- %zero padding into N = 500
- n1 = 0:499;
- x1 = [x,zeros(1,400)];
- subplot(2,1,2);
- % subplot(2,1,1)
- % stem(n1,x1);
- % title('signal x(n), 0 <= n <= 499');
- % xlabel('n');ylabel('x(n) over n in [0,499]');
- Xk = dft(x1,500);
- magXk = abs(Xk);
- k1 = 0:1:499;
- N = 500;
- w1 = (2*pi/N)*k1;
- stem(w1/pi,magXk);
- title('DFT of x(n) in [0,499]');
- xlabel('frequency in pi units');
- %In order to clearly see the relationship between DTFT and DFT, we draw DTFT on the same picture.
- %Discrete-time Fourier Transform
- K = 500;
- k = 0:1:K;
- w = 2*pi*k/K; %plot DTFT in [0,2pi];
- X = x1*exp(-j*n1'*w);
- % w = [-fliplr(w),w(2:K+1)]; %plot DTFT in [-pi,pi]
- % X = [fliplr(X),X(2:K+1)]; %plot DTFT in [-pi,pi]
- magX = abs(X);
- % angX = angle(X)*180/pi;
- % figure
- % subplot(2,1,1);
- hold on
- plot(w/pi,magX,'r');
- % title('Discrete-time Fourier Transform in Magnitude Part');
- % xlabel('w in pi units');ylabel('Magnitude of X');
- % subplot(2,1,2);
- % plot(w/pi,angX);
- % title('Discrete-time Fourier Transform in Phase Part');
- % xlabel('w in pi units');ylabel('Phase of X ');
- hold off- n! I8 r" }2 u2 I
: O# b- F- d$ O
) U! [: Y5 O1 P% P5 y9 [! ]
- N9 A1 d; b7 F% U* }" T0 _9 a! W5 n* d7 N% U: n2 T
局部放大看:3 I7 I, z$ i+ j' a- w3 D
( Z. e$ E8 u4 K+ V+ z! f6 [7 _+ b
3 S( b: u/ Q7 ^7 P& t6 }
* j4 r' G8 h9 p! H4 ] ( n/ S) f- c! K+ }- X2 Z% C
9 T. \' L2 D x" j4 W6 r1 V, d2 e: h5 L6 E8 m
|
|