, I* f( _7 u' U T6 N' I7 _
激光雷达(LiDAR)是一种测距技术,近年来越来越多地用于汽车先进驾驶辅助系统(ADAS)、手势识别和3D映射等应用。尤其在汽车领域,随着传感器融合的趋势,LiDAR结合成像、超声波、毫米波雷达,互为补足,为汽车提供全方位感知,为迈向更安全的自动驾驶铺平道路。
9 i9 O& l: e% u$ ]$ n- z9 a# H
激光雷达(LiDAR)是一种测距技术,近年来越来越多地用于汽车先进驾驶辅助系统(ADAS)、手势识别和3D映射等应用。尤其在汽车领域,随着传感器融合的趋势,LiDAR结合成像、超声波、毫米波雷达,互为补足,为汽车提供全方位感知,为迈向更安全的自动驾驶铺平道路。安森美半导体提供这全系列传感器方案且技术遥遥领先,在单光子雪崩二极管(SPAD)和硅光电倍增管(SiPM)传感器技术是市场领袖之一,提供完整的LiDAR方案,包括系统、传感器、输出和激光驱动器方案。
! [* ?# q& N1 G& C4 q7 V. g
安森美半导体完整的LiDAR方案
4 M% V+ Q* M( X: V5 X6 W' o
1个LiDAR系统有6个主要的硬件功能块:传输、接收、光束转向、光学器件、输出和电源管理。典型的LiDAR系统框图如图1所示。其中,安森美半导体可提供SiPM/SPAD、激光驱动器参考设计、电源管理、放大与处理以及时序、直方图、点云生成乃至系统等。成熟的模拟SiPM 产品有C系列、J系列、R系列。系统有SiPM 阵列扫描LiDAR 演示仪(超过100 m扫描距离)、把SiPM 与图像传感器融合的FUSEONE、最新的400 x 100 SPAD 阵列Pandion。
0 h3 T# `7 ]2 O4 f! N* o7 ] M$ g
6 Y" w& {0 y, L/ R; ^什么是SPAD、SiPM和ToF
$ t; J) F* G( M- v1 Z# ~- T: ~ k+ T( ZSPAD是一种工作在盖革模式(Geiger Mode)的光电二极管,就像光子触发开关一样,处于“开”或“关”状态。SiPM是由多个独立的SPAD传感器组成,每个传感器都有自己的淬灭电阻,从而克服单个SPAD不能同时测量多个光子的不足。飞行时间(ToF)指给目标发送光脉冲然后传感器接收从目标返回的光所需的时间。通过光速和ToF,可计算出目标距离,概念很简单,但却受到现实世界诸多挑战,包括苛刻的环境如光照条件、低反射率目标及长距等。目前共有两种ToF测量技术:单激光脉冲法和多激光脉冲法。单激光脉冲法指每次测量单个脉冲返回的时间,要求高的信噪比(SNR)。多激光脉冲法指每次测量多个脉冲返回的时间,通过直方图数据来获得距离,若提高SNR可实现更远距离的探测。ToF LiDAR可用于许多应用,如机器人、无人机、工业、移动、汽车ADAS和自动驾驶及增强实境(AR)/虚拟实境(VR)等。
! p6 B2 S5 N i3 ]SiPM和SPAD正成为新兴的LiDAR探测器
% ?+ M0 \6 y/ G! r3 XSiPM和SPAD可探测距离超过200 m、5%的低反射率目标,在明亮的阳光下也能工作,分辨率极佳,且尽可能小的光圈和固态设计实现紧凑的系统集成到汽车中,并极具成本优势,正成为新兴的LiDAR探测器。
( S }. n6 y) A- ~汽车LiDAR传感器要求
: t1 ^: a& r2 E# U5 z, P1. 严格的一致性
4 e/ W) W; Z( f+ U
由于SiPM/SPAD工作在盖革模式下,所以很难控制产品的一致性。安森美半导体是目前全球真正有能力大批量量产SiPM产品的供应商,其提供的数百万传感器的电压和增益非常一致,易于系统校准和降低制造成本。
+ C4 {7 J i K' z
2. 符合车规(IATF16949、AEC Q102、-40至1050C工作温度、符合PPAP)
+ M# t6 g/ A; s- `# K& i5 L
安森美半导体在汽车生产方面积累了多年的专业经验,有非常完善的车规产品的质量监督和控制体系,从一开始设计就考虑了汽车认证去设计传感器和封装。
3 {. T" w$ F* J: g3. 在905 nm处高的光子探测率(PDE)
1 @$ W- s% C5 {8 v
安森美半导体的SiPM如今具有同类最佳的PDE,超过12%,2020年将达30%。
5 `9 z% |: f" ?, e8 b
4. 高增益
: [, k3 z. ]9 a/ e7 a7 {* O! NSiPM的增益是雪崩光电二极管(APD)的1万倍,是PIN二极管的100万倍,串扰<20,提供出色的SNR。
7 Y, V3 @! z9 ^SiPM阵列扫描LiDAR 系统
: i H0 l8 c$ P' H% h. f) \该SiPM 阵列扫描LiDAR含16个905 nm 激光二极管、1个用于光束转向的机电旋转镜、安森美半导体的单片1 x 16 SiPM 阵列和处理电子器件,视场角(AoV) 80°x 5.53°,脉宽1 ns,系统峰值功率400 W,系统尺寸22 cm x 18 cm x 13 cm。这系统采用1D阵列同时采样多个垂直点,并结合水平单轴扫描,可获得视场的完整图像,实现长距低反射率目标的实时成像。
9 N6 b( n4 i; r ~4 Y( R
FUSEONE系统:融合图像和LiDAR
+ F+ S% k. |. [6 f, w2 `FUSEONE结合200万像素汽车级图像传感器和基于SiPM的闪光LiDAR,通过软件应用程序融合摄像机和LiDAR,获得目标距离、移动速率等数据,高灵敏度的SiPM 探测器和幻影智能算法实现增强的距离能力。由于无需机械式的雷达扫描,FUSEONE极具成本优势。该系统采用8个SiPM和2个905 nm激光二极管,脉宽20 ns,峰值功率80 W,接收器光路径采用43 nm带通滤波器,Xilinx FPGA 用于边缘处理全波形采集,AoV 为25° x 3.6°,在户外20 klux的光照条件下,行人检测达45 m,汽车检测达85 m。 ) o' D! `9 M+ c9 G7 K H4 B
PandionSPAD阵列实现长距扫描LiDAR
$ r6 L( O8 w! j( m3 B: |! O5 V400×100 SPAD 阵列具有CMOS 逻辑器件,阵列尺寸14 mm × 3 mm,像素间距38.6 um,采用卷帘快门读出(100通道并行读出),被动淬灭主动复位(PQAR)特性可获得<5 ns恢复时间,击穿电压达3.3 V以上。区别于传统的点云,Pandion SPADLiDAR已形成了图像。
9 G* F; G- D5 l9 w& a
* g- N }; F( P9 `" \% G 5 l ]8 U9 O) d! @0 O5 m/ }
( B& c* r7 H1 f9 }
总结
3 A+ S3 l6 V+ y; V- ~" P. U
SiPM和SPAD技术是实现LiDAR系统中接收器功能的关键,基于盖革模式雪崩原理,实现紧凑、高增益的传感器,安森美半导体是这些技术的市场领袖,提供完整的LiDAR方案,包括SiPM传感器、SiPM 阵列扫描LiDAR系统、融合SiPM闪光LiDAR和图像的FUSEONE系统以及Pandion SPAD阵列,具有强固、性价比高、符合车规等优势,并积极研发创新,同时为设计人员提供广泛的现场应用支援、相关的应用注释和视频库、产品演示系统、经验证模型的仿真数据等,解决设计挑战和推动创新。
- |: G( k5 i- |# [( R$ z
. i$ T5 a' I6 N/ R( E/ y; I
自动驾驶 汽车电子 激光雷达 技术实例 安森美半导体
* Q% E8 ~4 q; e8 c% Z' I8 g
; U" k0 m: ?% m7 C3 w& I3 O