找回密码
 注册
关于网站域名变更的通知
查看: 425|回复: 2
打印 上一主题 下一主题

[毕业设计] 基于单片机的变频器设计

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-27 15:23 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
基于单片机的变频器设计

) o! @: W& b; f2 ?
摘  要
( U& v3 G. p- [0 k' W  z
变频器是从上世纪中叶发展起来的一种交流调速设备。它是为了解决传统的交流电机调速困难、传统的交变速设备不但结构复杂且效率和可靠性均不尽人意的缺点而出现的,变频器的出现使交流电机的调速范围和调速性能均大为提升。而无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为 BLDC。无刷直流电机具有体积小、重量轻、维护方便、高效节能、易于控制等一系列优点,如今被大量应用。如电动自行车的主驱动电机,变频家电,如空调、冰箱等主机。控制系统是电动自行车的核心,与其控制对象——无刷直流电动机共同构成电动自行车的动力驱动系统。本文以24V,3相6极无刷直流电动机作为研究对象,建立了基于单片机的全数字化无位置传感器无刷直流电机控制系统。
关键词:直流无刷电机  电机控制器  无传感器控制  变频控制

7 M, i2 u6 t( n/ y2 M
8 S( y. ^( S4 V* V
[关键词与摘要内容隔行书写,词条用小四号宋体字,词条间用分号(;)隔开,3-5个关键词]
The Design of converter based on mcu

! F! K$ v6 S! ~7 c
Abstract
The converter is from an AC speed regulation equipment developed in the middle of last century. It appears to solve the AC motor speed control difficulties, the traditional traditional AC transmission equipment not only complex structure and efficiency and reliability are unsatisfactory shortcomings, the emergence of the inverter AC motor speed range and speed peRFormance are greatly improved. The brushless DC motor DC brush motor because of its characteristics, also the frequency change, so also known as DC inverter, the general term for the BLDC. Brushless DC motor has the advantages of small volume, light weight, easy maintenance, high efficiency and energy saving, easy to control, is now a large number of applications. As the main drive motor, electric bicycle conversion household appliances, such as air conditioning, refrigerators and other host. The control system is the core of electric bicycle, and control object -- brushless DC motor together form the electric bicycle driving system. Based on the 24V, 3 phase 6 pole brushless DC motor as the research object, established a single-chip digital Sensorless Brushless DC motor control system based on.

( N; b& O+ d& i& h
Keywords:BLDC  MOTOR CONTROLOR Sensorless control Frequency conversion control
千万不要删除行尾的分节符,此行不会被打印。(在word菜单-工具-选项-视图标签中,格式标记部分请全部打对号,这样就可以看到隐藏的分节符和空格等信息了)

" s/ B. _$ p/ A) P" n, D4 R0 D) Z! I

. [! f' ^. P2 O2 V8 ~
, y+ ~" N& J4 o$ {
* z" B. S6 Y( _, W! \0 i' ?, s5 U
; K: R& j8 ]2 K6 C* `. D4 |
1概述; r: Q+ e" T7 t
9 [) k' Z& g  h5 y. R+ e
变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。随着电力电子技术、微电子技术、计算机网络等高新技术的发展,变频器的控制方式今后将向数字控制变频器等方向发展。现在,变频器的控制方式用数字处理器可以实现比较复杂的运算,变频器数字化将是一个重要的发展方向。

  ~' s6 f0 p. n$ B' u1 v
电动自行车的驱动电机即为BLDC电机,本文以STM8S903K3单片机为核心,完成了电动自行车控制器的软硬件设计,尤其对BLDC电机的直流变频控制部分进行了重点阐述。硬件部分包括电源、MOSFET驱动、电流检测等电路的设计,画出了各电路具体工作原理图,解释了其工作原理并介绍了硬件设计注意事项。软件设计采用分模块结构,详细介绍了电子换相、欠压保护和速度控制等编程要点,画出了各模块的程序设计流程图并介绍了软件设计注意事项。

3 m6 V7 j. X. j9 x% P, [% C5 s' H, d
文中,着重介绍了电动自行车控制系统的基本组成和工作原理。包括无刷直流电动机的基本结构和工作原理并推导了其数学模型、电动自行车控制器的各项功能及工作原理、调速转把和制动转把的工作原理以及信号系统和照明系统的工作原理。整体上对电动自行车控制系统进行概括,为以后控制系统的软硬件设计奠定理论基础。
% q7 g7 r" S3 h$ s' d3 \" v* A) w
最后,详细阐述了以STM8S903K3单片机为核心的电动自行车控制器的软硬件设计。硬件部分包括电源、MOSFET驱动、电流检测等电路的设计,画出了各电路具体工作原理图,解释了其工作原理并介绍了硬件设计注意事项。软件设计采用分模块结构,详细介绍了电子换相、欠压保护和速度控制等编程要点,画出了各模块的程序设计流程图并介绍了软件设计注意事项。
2 D( j  j' V9 z: W7 Z
2 T  \7 c5 o# v* L* X. |
1.2电动自行车控制系统的研究现状
+ Y2 f7 X( H- y- b

* Q$ G' T" s1 b! ~* E8 x: i0 ]
电动自行车控制系统可以视为以控制器为核心,包括转把、刹把、仪表以及相关的传感器、开关按钮等器件的集成。其中,控制器决定了电动车的操控性能,因此控制器功能的提高、完善及合理发挥对于电动自行车控制系统来说尤为重要[10]。

2 r2 Y5 B  I5 C
电动自行车控制器的主要形式有:分立元件加少量集成电路构成的模拟控制、基于专用集成电路的控制系统、以微型计算机技术为核心的数模混合控制系统和全数字控制系统[11~12]。

* u  i# X' y! L6 M; N' k
模拟控制系统由于模拟电路中不可避免的存在参数漂移和参数不一致等问题,加上线路复杂、调试不便等因素,使电机的可靠性和性能受到影响,在电动自行车控制器中己经不采用了。

/ x: {8 y9 _. E$ j
基于专用集成电路的控制系统采用无刷直流电动机专用集成电路如MC33033、MC33035、ML4428为控制核心,克服了分立元件带来的弊端,使控制电路体积小、可靠性高,但功能难以扩展,在早期的电动车控制器中应用较多。
! p# @3 x) X+ t
数模混合控制系统和全数字控制系统采用数字电路、单片机以及数字信号处理器(DSP)构成硬件系统,控制规律由硬件实现转向软件实现。控制灵活、功能扩展方便且易实现较复杂的控制算法。目前的电动自行车控制器普遍采用这种控制系统[13]。

6 x1 w( Y9 i! Q, L) O  j1 P. o4 @
3 [6 z- g, J" C( e) Z
电动自行车控制器发展趋势及研究难点
* ~: r" S* x2 K' @( D7 v
: s1 V" ?& {, R6 w! G0 p) y' q2 i
1)研究难点
9 {/ w' R) a4 O+ ]! ]. X
a.电机转矩脉动优化控制。120°六步换相控制时容易出现转矩脉动,影响无刷直流电机的平稳运行,增加噪声并降低效率。通常可通过调整PWM载波方式和重叠换相来抑制电流换相引起的转矩脉动。目前,为了减少转矩脉动,BLDC电机的控制方法的研究正在从传统的120°控制方法到180°的控制方法转换。

7 N  Y1 \/ _" ]4 a
b.增加电机力矩。自行车在起动和爬坡时,要求电机及控制器有充分的过载能力,以提供足够的起动和爬坡力矩。通常,通过增加电流闭环控制可获得更大的起动力矩和响应速度。现状正在研究通过对电机的弱磁控制来增加电机的力矩。
" M5 T- [0 n: D! K8 x2 S5 K+ @
c.能量再生控制及辅助电子刹车。续程性能一直是制约电动车发展的关键因素之一,提高续程的方法除了改进蓄电技术以及驱动策略外,还有就是刹车时采用先进的能量回收控制。目前已有的电动自行车能量回收方案基本上是基于电动汽车的能量回收控制理论,但大多数控制器并没有充分进行能量回收控制,只是作为ABS辅助刹车时的一个附加功能。
/ w- P) {+ T6 s: @7 S$ o# p* y
d.无位置传感器的BLDC控制。位置传感器的存在增加了电机的体积和成本,同时给电动自行车增加了一个故障源。统计表明,多数电动自行车的电机损坏实际上是由于位置传感器失效造成的。针对位置传感器的不利因素,人们对无位置传感器的BLDC控制技术进行了很多的研究,并在空调系统、风机等不同设计中得到广泛的应用。但在电动自行车中,由于无位置传感器控制技术无法解决平稳启动的问题,因此难以得到最终客户的认可,而一直没有得到广泛的使用。所以,该技术目前的瓶颈是如何解决平稳启动。
9 N+ q4 X0 D' P$ _8 \9 p
2)发展趋势

; @4 w. t! P' I3 U+ a
廉价化。对于现有的成熟设计,追求更低的成本。通过选用更低价钱的元器件以及MCU,相应地,MCU厂商会配合推出更新工艺的廉价兼容型号来降低控制器的成本。

4 Y5 S, G! D/ n- I* R* [
智能化。智能化越来越成为电动自行车控制器的发展趋势。MCU必须具有自检、自维护能力,确保动作的“万无一失”。另外,防盗报警功能,电源自动识别功能,自动识别电机、智能锁功能等人性化设计都是技术上的发展方向。

# s7 n  J! q, u, M  N" h
集成化。集成化可以实现体积小、效率高、返修率低,因此是品牌厂家的首选。目前市场上普遍使用的控制器方案设计陈旧,外部分立元件多,任何一个元件失效都会影响到电控器质量。因此高度集中化是未来的发展方向。

9 n1 u6 }/ x6 v
定制化。由于电动自行车市场的庞大,为了进一步降低成本,一些公司开始专门为电动自行车业定制芯片。同时对于电动自行车控制器的设计部门来说,根据客户需求开发相应功能的控制器也是未来的发展方向[14]。
8 q0 m0 p+ d" ^$ s! z1 \
论文研究内容和结构
( B, W) }) B+ }7 h  l  T

& X, V3 j% n1 A! o- H
本文在前人研究的基础上,以24V,3相6极无刷直流电动机作为研究对象,研究的目的是开发出一款可供电动自行车领域的无刷直流电机无位置传感控制系统参考的控制器。
. r9 G, E( s/ }( w: f
本论文首先详细介绍了本课题研究背景及意义、电动自行车的国内外发展现状和电动自行车控制器的研究难题及未来发展趋势。接着介绍了无刷直流电动机的基本结构、工作原理以及数学模型。然后介绍了电动自行车控制系统的各个组成部分并对各部分工作原理进行分析。介绍了无刷直流电机的数学模型,使用硬件电路的方法去检测反电动势过零点。最后对电动自行车控制系统软硬件部分进行分模块研究与分析,给出了系统软硬件设计框图及各模块的具体电路原理图和软件控制程序流程图。

( d; M! g. o3 Q. Z
无刷直流电机概述
无刷直流电机是随着电子技术的迅速发展而发展起来的一种新型直流电机,它是现代工业设备中重要的运动部件。无刷直流电机以法拉第的电磁感应定律为基础,而又以新兴的电力电子技术、数字电子技术和各种物理原理为后盾,具有很强的生命力。
5 {2 N* t3 s9 `0 G/ u3 c" p. f" B
无刷直流电机最大特点是没有换向器(曾称整流子)和电刷组成的机械接触机构。因此,无刷直流电机没有换向火花,寿命长,运行可靠,维护简便。此外,其转速不受机械换向的限制,如采用磁悬浮轴承或空气轴承等,可实现每分钟几万到几十万转的超高转速运行。
  k0 R' \: H  x
由于无刷直流电机具有上述一系列有点,因此,它的用途比有刷直流电机更加广泛,尤其适用于航空航天、电子设备、采矿、化工等特殊工业部门[47]。

& [* m& e* w! B5 J
无刷直流电机控制系统概况
8 x# i' \  Q0 @. K
* P: ?  c" l" A5 m6 a
一个多世纪以来,电动机作为机电能量转换的装置,其应用范围已遍及国民经济的各个领域以及人们的日常生活之中。电动机主要类型有同步电动机、异步电动机(感应电动机)与直流电动机三种,其容量小到几瓦,大到上万千瓦。众所周知,直流电动机具有控制简便和调速性能好等诸多优点,但传统的直流电动机均采用电刷,以机械方法进行换向,因而存在机械摩擦,由此带来了噪声、火花、无线电干扰以及寿命短等致命弱点,再加上制造成本高及维修困难等缺点,从而大大地限制了它的应用范围[15]。

2 _2 T$ B& Y4 z  c2 t/ @* ^
随着社会生产力的发展,人们的生活水平的普遍提高,需要不断地开发各种新型电动机。科学技术的进步,新技术、新材料的不断涌现,更促进了电动机产品的不断推陈出新。针对上述传统直流电动机的弊病,早在20世纪30年代,就有人开始研制以电子换向来代替电刷机械换向的无刷直流电动机,并取得了一定成果[16]。但由于当时大功率电力电子器件仅处于发展的初级阶段,没能找到理想的电子换向的元器件,这就使得这种电动机只能停留在实验室研究阶段,无法推广使用。1955年,美国人D·哈利森等人首次申请了应用晶体管换向代替电动机机械换向器换向的专利,这就是现代无刷直流电动机的雏形[16]。但由于该电动机尚无启动转矩,因而不能产品化。而后,又经过人们多年努力,借助于霍尔元件来实现幻想的无刷直流电动机终于在1962年问世,从而开创了无刷直流电动机产品化的新纪元[16]。20世纪70年代以来,随着电力电子工业的飞速发展,许多新型的高性能大功率电力电子器件,如GTR、MOSFET、IGBT等相继出现,以及高性能永磁材料,如钐钴、钕铁硼等的问世,均为无刷直流电动机的广泛应用奠定了坚实的基础。
典型的无刷直流电动机控制系统主要由电机本体、转子位置传感器、主回路逆变器和控制逻辑单元构成,其中电机本体与转子位置传感器往往做成一体,而在本文中主回路逆变器被称作驱动电路,而控制逻辑单元则称作控制电路。

. J/ B7 ^$ U/ N& d! D3 N
当前无刷直流电机调速系统驱动电路采用的功率器件主要是IGBT、MOSFET等全控型器件[15]。

- y$ n/ U" H* N, F
根据获取转子位置的不同方式,无刷直流电机调速系统分为两大类:有位置传感器的无刷直流电机调速系统和无位置传感器的无刷直流电机调速系统。前者指电机上安装特殊的装置,直接获取转子位置信息的调速系统;后者指由系统变量间接确定转子位置的调速系统。无位置传感器的无刷直流电机调速系统具有体积小、结构简单、易于维护等优点,是无刷直流电机控制领域的一大研究方向[15]。

% O" f# F% I4 J) [1 M, b4 x7 L
无刷直流电机本体有多种分类方式。根据定子相数的不同,可分为三相或多相无刷直流电机,其中以三相电机应用最为普遍;根据转子位置的不同,可分为内转子或外转子无刷直流电机;根据电机磁场方向的不同,可分为径向磁场或轴向磁场(盘式)无刷直流电机等[1]。
, E' q. E0 ^0 s. v/ G, |& @
由于无刷直流电动机既具备交流电动机的结构特点、运行可靠、维护方便等一系列优点,又具备直流电动机调速性能好等诸多优点,故而在当今国民经济的各个领域,如医疗器械、仪器仪表、化工、轻纺以及家用电器等方面的应用日益普及。如计算机硬盘驱动器和软盘驱动器里的主轴电动机、DVD机中的伺服电动机,均数以百万计地运用无刷直流电动机[16]。

0 F% h4 C) N  t6 Y. y% R6 E
无刷直流电机的结构与工作原理1 ^1 a" |2 Y' C* D, W
  P; T' Z, Z  E2 i" ~+ m+ }7 O
无刷直流电机的结构9 ~( J9 x2 G  Y
: r( n2 W$ j, u: \. |
无刷直流电动机的主要组成部分有电动机本体、位置传感器与电子开关等3部分,如图2.1所示。电动机本体在结构上与永磁同步电动机相似,但没有笼形绕组和其他起动装置。定子绕组一般制成多相(三、四、五相不等),转子由永久磁铁按一定的极对数(2p = 2,4,…)组成,电子开关一般是由功率电子器件和它的控制电路以及转子位置传感器等组成。图1所示的电动机本体为2极三相。定子A、B、C相绕组分别与电力开关元件V1、V2、V3相接。位置传感器的跟踪转子与电动机转轴相链接。
8 Q/ W: [. D' d2 m2 x- |
8 ?5 P4 U0 j% ^# c% V1 M
游客,如果您要查看本帖隐藏内容请回复

: A1 f  K4 g6 [# j- T1 J# P

1 X) T9 P4 k5 |5 T3 k

3 Y6 d% T: b2 p' z' I% I4 z
5 k: t' V9 N8 E: |) Y0 B* r
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-8-4 16:38 , Processed in 0.125000 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表