EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 CE_Manager 于 2019-11-20 13:58 编辑
/ s$ Y* P8 a% l1 N1 u* l6 q* g, H/ f1 E
关键词:巨磁电阻
% P2 H6 o0 z3 E- F) r# ]3 N* f3 ]2 `* v" n' [* ^
本文主要介绍的是巨磁电阻效应,首先详细的阐述了巨磁阻效应与层结构,其次介绍了巨磁电阻效应的应用,具体的跟随小编一起来了解一下。 巨磁电阻效应是什么 所谓巨磁电阻效应是指材料的电阻率在有外磁场作用时较之无外磁场作用时存在显著变化的现象。一般将其定义为GMR=其中(H)为在磁场H作用下材料的电阻率(0)指无外磁场作用下材料的电阻率。由外加磁场引起的一些磁性材料的电阻巨大变化(称为巨磁电阻效应)便是磁电子学中一项重要内容。在室温下具有巨磁电阻效应的巨磁电阻材料目前已有许多种类,例如,多层膜巨磁电阻材料,颗粒型巨磁电阻材料,氧化物型巨磁电阻材料,隧道结型磁电阻材料等。 巨磁阻效应与层结构分析所谓磁阻效应是指导体或半导体在磁场作用下其电阻值发生变化的现象,巨磁阻效应在1988年由彼得•格林贝格(Peter Grünberg)和艾尔伯•费尔(Albert Fert)分别独立发现,他们因此共同获得2007年诺贝尔物理学奖。研究发现在磁性多层膜如Fe/Cr和Co/Cu中,铁磁性层被纳米级厚度的非磁性材料分隔开来。在特定条件下,电阻率减小的幅度相当大,比通常磁性金属与合金材料的磁电阻值约高10余倍,这一现象称为“巨磁阻效应”。 巨磁阻效应可以用量子力学解释,每一个电子都能够自旋,电子的散射率取决于自旋方向和磁性材料的磁化方向。自旋方向和磁性材料磁化方向相同,则电子散射率就低,穿过磁性层的电子就多,从而呈现低阻抗。反之当自旋方向和磁性材料磁化方向相反时,电子散射率高,因而穿过磁性层的电子较少,此时呈现高阻抗。 基于巨磁阻效应的传感器其感应材料主要有三层:即参考层(Reference Layer或Pinned Layer),普通层(Normal Layer)和自由层(Free Layer)。如图1所示,参考层具有固定磁化方向,其磁化方向不会受到外界磁场方向影响。普通层为非磁性材料薄膜层,将两层磁性材料薄膜层分隔开。自由层磁场方会随着外界平行磁场方向的改变而改变。
|