|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1:一般模式的BP:
. }$ L% ^1 a" P% iclc( l9 y: n7 L" S* [3 e- V+ G- |+ K
P=[-1 -1 2 2 ;0 5 0 5];& Q; t4 z3 A( ~" f
T=[-1 -1 1 1];
+ k* d! ?0 S, qnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingd');
9 Q' {' E+ F& a- t% s; ^* }net.trainParam.show=50;
4 w5 R+ q6 i4 [4 B% g9 Xnet.trainParam.lr=0.05;: H& A8 S6 }; ]+ M
net.trainParam.epochs=300;. M8 i+ a9 I5 S
net.trainParam.goal=1e-5
' O) g% S9 T9 A( a! x[net tr]=train(net,P,T);8 Q. t, t. U5 W& }% O2 c+ U
( ]/ D/ T2 L, C8 P2 K* d. Q$ K/ D& D2:加入动量的BP. [: v0 g) ?' \ ?1 |( e5 ?
clc
- O4 {& M4 s) V0 f/ p2 i% @P=[-1 -1 2 2 ;0 5 0 5];
+ F. I( E" n; ~8 N% I2 B1 R' K. jT=[-1 -1 1 1];
0 y( G" j7 W9 P" Anet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingdm');/ c6 r4 J) N9 Z: j; G
net.trainParam.show=10000;
6 Z1 `4 \9 x, d& Nnet.trainParam.lr=0.05;8 U' n: A0 M$ e# d+ P6 Q
net.trainParam.mc=0.9;
4 J1 T0 F: s- e2 g1 F- Z Znet.trainParam.epochs=10000;
% d* V7 \$ [1 C1 m, O2 L! knet.trainParam.goal=1e-5*100
& t& B! p& ]. Q! X[net tr]=train(net,P,T);" f/ q1 ^6 a( C- W
, r) s# A" u' ^8 t# _ h3 ^- |, v
3:自适应LR变步长:
# u5 A7 l! n" dclc
5 [9 ]: R* F' gP=[-1 -1 2 2 ;0 5 0 5];( [0 Q5 k9 c5 F' y3 q
T=[-1 -1 1 1];
/ Y2 k) {" \/ U, a* C" n: w4 Fnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingda');
9 O8 `5 r* U; N- Bnet.trainParam.show=10000;
8 j) i$ `6 P9 enet.trainParam.lr=0.05;
1 B# E+ i% i: s1 J* r' Wnet.trainParam.lr_inc=1.05;
" M6 A: H9 M8 onet.trainParam.epochs=10000;
0 |" Y% @! {- V( W/ n: @) {net.trainParam.goal=1e-5*100% Q/ T: \/ E y" V* {! I5 w
[net tr]=train(net,P,T);
* H% N; ~6 l8 ^% X6 Q, e" z+ V: P8 Y6 N
7 o3 }( ]8 }! ]; J% A1 E- ?: D
8 V0 m! N9 Z ]1 U1 B4:弹性梯度法
- W _: u" g* \* W0 P" mclc
& I$ T, i# U; U$ `: G+ ?( ^" c. WP=[-1 -1 2 2 ;0 5 0 5];
0 c. x# W Q8 m6 g# M4 {T=[-1 -1 1 1];2 K7 \' }. V9 p. R# P9 Y
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainrp');
2 H3 t+ k/ D8 d) ~net.trainParam.show=10000;
8 Y2 o" O, W( O' s+ d' f- Snet.trainParam.lr=0.05;( b: ~( q' s* q6 Q( x' ~/ B
net.trainParam.lr_inc=1.05;9 M0 p4 V/ @7 F4 U3 g A7 G# r
net.trainParam.epochs=10000;* I$ o2 \$ @$ Y- p3 T0 c
net.trainParam.goal=1e-5*100
3 g4 O3 m% e7 E) }% X[net tr]=train(net,P,T);' y2 y7 b' Z+ N3 C1 S2 m
4 c5 c" l" a, e1 Q" @1 s" M5:共轭梯度1 [1 f5 T( D) H! ^
clc+ C. u5 ~" a* g" }, |+ V
P=[-1 -1 2 2 ;0 5 0 5];
" q8 b- b6 e5 y8 ]1 GT=[-1 -1 1 1];* ^, g2 q, e5 K9 o+ ]' s: `
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgf');
! E6 d+ q. P4 A& G, e8 |( Dnet.trainParam.show=10000;
% @+ o0 c) Y& v8 U9 Lnet.trainParam.lr=0.05;
9 q. c: a W( {net.trainParam.lr_inc=1.05;
. X9 n9 ~; B! P& r+ unet.trainParam.epochs=10000;
' P) p' q, d* V9 _3 }9 F% j ~net.trainParam.goal=1e-5*100
, A1 x+ p$ p( A \/ U# j* S9 ?* R[net tr]=train(net,P,T);
8 ]7 |0 y" d7 N* S% ^' z1 Z% E: Y2 Q x; `1 V" ~8 {$ l! u
6:共轭梯度2
; P$ Q1 I* Y" R0 ?2 Z3 q4 a+ `! |clc
$ {) B/ G2 W! \& ` K |( aP=[-1 -1 2 2 ;0 5 0 5];
$ t5 h: O O" k' \$ j3 b8 q# HT=[-1 -1 1 1];3 g9 k+ r0 R: n# ]1 B$ i! o4 @( D
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgp');
: L% ^/ o0 U3 e+ vnet.trainParam.show=10000;" ~) h& q- D; W$ G
net.trainParam.lr=0.05;$ j; E5 m r- c
net.trainParam.lr_inc=1.05;
6 j8 _; z P' q* lnet.trainParam.epochs=10000;+ Q2 L- d# m! _* e
net.trainParam.goal=1e-5*1008 a, J6 Y% E, o' M) M* O2 a
[net tr]=train(net,P,T);4 [8 p2 C# u) p! U5 |5 ^
u% J; t/ N2 E; F1 d; q
7:共轭梯度3
8 y( A) N4 ]# ~8 g* s& T8 Nclc
' Z3 Z; H$ r4 f& HP=[-1 -1 2 2 ;0 5 0 5];; n3 V) t7 E0 z K
T=[-1 -1 1 1];
$ h9 r) p) V6 M: i0 F3 ]net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');, _+ c" f, N4 g- N
net.trainParam.show=10000;
# L& E' _9 A: P {net.trainParam.lr=0.05;
* \* }5 a% x) y5 c% C7 Fnet.trainParam.lr_inc=1.05;( j( b3 [+ J. U. R$ D1 V1 U! K! O
net.trainParam.epochs=10000;
. \2 A0 U. z: w+ q p" v* d jnet.trainParam.goal=1e-5*1009 P5 [& T+ H; Q# ^1 s
[net tr]=train(net,P,T);7 I' l8 f5 \4 R2 r5 M1 d
5 W9 M5 c5 s9 ~, M( z- u8:共轭梯度4
% B! S5 ~" t4 aclc
c+ S1 i: v: F9 O6 h$ ]" O [3 m+ }P=[-1 -1 2 2 ;0 5 0 5];
' e2 ~3 ?1 w' ?8 U9 W( L2 mT=[-1 -1 1 1];
; P3 E5 h( i$ znet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');
' v6 Q1 D' y1 d/ ] O, }net.trainParam.show=10000;
4 c, D J( z f/ m6 Dnet.trainParam.lr=0.05;& I5 \0 \) z, x5 W" H; i
net.trainParam.lr_inc=1.05;
2 K. _1 C8 T: E; s5 _3 V5 Enet.trainParam.epochs=10000;7 @" l% K9 D4 f& R$ U
net.trainParam.goal=1e-5*100
% @- {+ [1 K# h[net tr]=train(net,P,T);
3 b4 Q7 E& \- I( f+ }: N' F) \4 @
0 z. R' L) a1 C" B9:拟牛顿法;
, d" ~: B8 B, |) p# ]clc& O$ z/ x3 g' Q8 U
P=[-1 -1 2 2 ;0 5 0 5];7 {2 { E3 M, ? Q6 Q
T=[-1 -1 1 1];
1 f6 g" S4 r5 q+ a7 N9 K$ i4 e( Dnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainbfg');
( o& [1 s" |) p& `" fnet.trainParam.show=10000;3 b, L7 W# S3 D/ j3 h/ z6 h
net.trainParam.lr=0.05;
5 F* e1 C( R0 t2 h2 P# Mnet.trainParam.lr_inc=1.05;/ g' ]( d+ E4 f5 q9 g9 j o$ y
net.trainParam.epochs=10000;- _) _* `: ?; ^4 Q; P" D( O
net.trainParam.goal=1e-5*1007 k( ^( r& E$ k4 h) x+ s
[net tr]=train(net,P,T);, o; n0 z: m z, j5 f8 Y% \& ?
i3 B; D+ ?, P. {% b7 Z
10:一步正割. v s5 `3 [0 O- Q" h
clc( \3 N! ^9 L4 l$ j
P=[-1 -1 2 2 ;0 5 0 5];
; @$ z* Z2 j3 i `# NT=[-1 -1 1 1];1 k- Q7 E+ D, E2 E& M# y
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainoss');3 [; q, W" B8 S h0 y
net.trainParam.show=10000;
7 D# K' T/ w9 K! |3 j4 F) @2 ?net.trainParam.lr=0.05;
' Y: ]1 z# Q: w3 B7 knet.trainParam.lr_inc=1.05;4 N1 y: b2 c7 Z( D
net.trainParam.epochs=10000;4 j3 ?& @. q; J# z- I( C. @% \
net.trainParam.goal=1e-5*100* O8 R0 m7 f( o8 {# W& b, D
[net tr]=train(net,P,T);
- v+ i, J- q2 i% \) V F
" R0 i% J8 d6 o! y11:levenberg-marquarat:
/ x% s1 \4 ^$ @7 }$ ~clc1 h( H V* y8 s) B
P=[-1 -1 2 2 ;0 5 0 5];
6 C* ]$ c G4 ]0 |- a- UT=[-1 -1 1 1];
, H3 [7 I" l( m! anet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainlm'); Y5 R4 [; i/ b! H
net.trainParam.show=10000;
& i* m8 V" i6 M. e4 Z8 H" c7 ^net.trainParam.lr=0.05;! b3 D: H R2 [9 V K Q% M
net.trainParam.lr_inc=1.05;; d: g1 Y3 V3 F/ e; E9 N
net.trainParam.epochs=10000;. u1 v7 a3 O: J! x3 [6 i
net.trainParam.goal=1e-5*100# z; w) d1 |' ]( {1 B
[net tr]=train(net,P,T);
7 b- z ?; G$ A& x9 N
' J& b* G, C: v4 ` |
|