找回密码
 注册
关于网站域名变更的通知
查看: 499|回复: 1
打印 上一主题 下一主题

关于功率MOSFET线性区负温度系数的研究

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-9-2 11:29 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
关于功率MOSFET线性区负温度系数的研究

- p7 l3 m. }$ [, G0 o. C# u9 ?/ W7 L9 G% V
【导读】功率MOSFET工作在线性区用来限制电流,VGS电压低,通常在负温度系数区,局部单元过热导致其流过更大的电流,结果温度更高,从而形成局部热点导致器件损坏,这样就形成一个热电不稳定性区域ETI (Electro Thermal Instability),发生于VGS低于温度系数为0(ZTC)的负温度系数区。
, R- o$ a3 l  I, k: N8 p8 |
1 F; r3 a* S4 W1、线性区工作负温度系数特性
' w) J+ r2 _8 J/ t+ R
- w8 o) E' G& `2 ~8 C0 Z

功率MOSFET的转移特性如图1所示,VGS与电流ID曲线有一个温度系数为0的电压值5.5V,通常这个点就称为零温度系数点ZTC(Zero Temperature Coefficient)。VGS高于5.5V时,温度越高电流越小,功率MOSFET的RDS是正温度系数;VGS低于5.5V时,温度越高电流越大,功率MOSFET的的RDS是负温度系数。

9 t* R' O! n( c$ v( U2 P

功率MOSFET内部通常是由许多晶胞单元并联而成,如图2所示。通常假定芯片内部处于理想的热平衡状态,整个硅片的结温完全一致。然而在实际条件下,硅片边沿热阻低,如图3所示;由于硅片焊接的不均匀,各局部区的热阻也不一致;此外,各局部区的阈值电压VTH也不完全相同,它们通过的漏极电流,也就是(VGS-VTH)和跨导乘积,也不完全相同。上述因素导致局部区温度也不一样。


% }- U( k$ y2 f5 q

功率MOSFET工作在线性区用来限制电流,VGS电压低,通常在负温度系数区,局部单元过热导致其流过更大的电流,结果温度更高,从而形成局部热点导致器件损坏,这样就形成一个热电不稳定性区域ETI (Electro Thermal Instability),发生于VGS低于温度系数为0(ZTC)的负温度系数区。


" `% T  @9 s* ?/ D

开关电源中功率MOSFET工作于开关状态,在截止区和完全导通区之间高频切换,由于在切换过程中要经过线性区,因此产生开关损耗。完全导通时,RDS处于正温度系数区,局部单元的温度增加,电流减小温度降低,具有自动的平衡电流的分配能力。但是在跨越线性区时,会产生动态的不平衡。

+ p. j! C; _# [

对于热插拨、负载开关、分立LDO的调整管等这一类的应用,MOSFET较长时间或一直在线性区工作,因此工作状态和快速开关状态不同。功率MOSFET工作在线性状态,器件的压降和电流都较大,功耗大,因此产生高的热电应力,更容易导致热不平衡的发生,从而形成局部热点或局部电流集中,导致器件损坏;而且,也容易导致寄生的三极管导通,产生二次击穿,从而损坏器件。

- ], J* L7 Y2 v3 Z. ^" \9 m8 K& o

图1:AOT462的转移特性

图2:功率MOSFET内部晶胞单元

图3:芯片内部散热差异


: c" c$ ~& T% Q. b) `

正温度系数区主要处决于载流子的产生,负温度系数区主要处决于载流子的移动,因此表现出来的温度特性不同。

5 @) P, {" U/ H

器件的失效处取决于脉冲时间、散热条件和功率MOSFET单元平衡性能。通常,ZTC对应的电流越大,对应的VGS越大,就越容易发生热不稳定性问题。而且ZTC直接和跨导相关,跨导增加,ZTC点向更高的VGS点移动。

( h  B9 u9 r! V

相对传统的平面工艺,新一代的工艺的MOSFET单元密度大,具有更大的跨导,因此更容易发生热不稳定性问题。另外,高压的MOSFET比低压MOSFET,在ZTC点具有更低的电流和VGS,这是因为高压MOSFET的epi层厚,单元的Pitch较低,而且掺杂也低,所以RDS随温度变化决定着在整个温度范围内跨导的变化,因此比低压MOSFET发生热不稳定性问题的可能性降低。


) J  J2 p, I" c- e2、线性区工作的电势、空穴和电流线分布
9 i9 X0 L. w; R/ r5 f! W) s+ @, s4 l, t2 ~: f

MOSFET的漏极导通特性前面论述过,其工作特性有三个工作区:截止区、线性区和‍完全导通区。其中,线性区也称恒流区、饱和区、放大区;完全导通区也称可变电阻区。

功率MOSFET在完全导通区和线性区工作时候,都可以流过大的电流。理论上,功率MOSFET是单极型器件,N沟道的功率MOSFET,只有电子电流,没有空穴电流,但是,这只是针对完全导通的时候;在线性区,还是会同时存在电子和空穴二种电流,如图4、图5和图6分别所示,完全导通区和线性区工作时,电势、空穴和电流线分布图。

, R0 C0 z7 L- Q+ ^8 a, m' B

从电势分布图,功率MOSFET完全导通时,VDS的压降低,耗尽层完全消失;功率MOSFET在线性区工作时,VDS的电压比较高,耗尽层仍然存在,此时由于在EPI耗尽层产生电子-空穴对,空穴也会产生电流,参入电流的导通。

/ N+ n* d* q: C8 D  S' J2 e

空穴电流产生后,就会通过MOSFET内部的BODY体区流向S极,这也导致有可能触发寄生三极管,对功率MOSFET产生危害。由空、电流线穴分布图可见:线性区工作时产生明显的空穴电流,电流线也扩散到P型BODY区。

& t/ T% E; Y# v$ b

图4:完全导通(左)和线性区的电势分布图

图5:完全导通(左)和线性区的空穴分布图

图6:完全导通(左)和线性区的电流线分布图

4 B6 u7 O) }2 q: [5 O6 o

功率MOSFET在线性区工作时,器件同时承受高的电压和高的电流时,会产生下面的问题:


2 o. O+ W4 d2 O8 S7 |3 z

1、内部的电场大,注入更多的空穴。

2、有效的沟道宽度比完全导通时小。

3、改变Vth和降低击穿电压。

4、Vth低,电流更容易倾向于局部的集中,形成热点;负温度系数特性进一步恶化局部热点。


. \4 q2 \' N+ D3 h) B% b8 `* V

功率MOSFET工作在线性区时,器件承受高的电压,耗尽层高压偏置导致有效的体电荷减小;工作电压越高,内部的电场越高,电离加强产生更多电子-空穴对,形成较大的空穴电流。特别是如果工艺不一致,局部区域达到临界电场,会产生非常强的电离和更大的空穴电流,增加寄生三极管导通的风险。

  a; |7 w( a6 g% e; _

图7为通用Trench和SGT屏蔽栅(分离栅)完全导通的电流线,图7来源于网络。新一代SGT工艺的功率MOSFET局部区域电流线更密急,更容易产生局部的电场集中,因此,如果不采取特殊的方法进行优化,很难在线性区的工作状态下使用。

5 O2 [0 J* P* R0 r

图7:Trench(左)和SGT屏蔽栅电流线分布图


7 v% U, W  A0 s# g6 K& i& K8 h. T- G2 o
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-8-23 23:19 , Processed in 0.140625 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表