EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
如题:FRFT程序运行时说Not enough input arguments. 是怎么回事???# w" w- P4 Y5 U2 D7 y- o; P
" e4 D; `% ?' C& ?4 i( j5 [/ e9 Z% O# [function Faf = frft(f, a)
) |8 {7 f, D9 M* E) }% The fast Fractional Fourier Transform# H. c/ u W- i x/ X7 }
% input: f = samples of the signal& k9 p1 k# m" E5 Q7 \( q& C: L
% a = fractional power
! L3 l$ E' w6 G, O& }$ y% output: Faf = fast Fractional Fourier transform error(nargchk(2, 2, nargin)); f = f( ;1 t/ F+ [: b' l! M0 G: |4 o0 X
N = length(f);( C3 A+ m1 F( z) ], ?9 s
shft = rem((0:N-1)+fix(N/2),N)+1;3 `# O9 b7 O5 W" x& w* D
sN = sqrt(N);" T* _ S6 Z: X; L
a = mod(a,4); % do special cases2 d6 z8 w; @+ v; |; L3 J
if (a==0), Faf = f; return; end;
* K' Q) R2 [4 gif (a==2), Faf = flipud(f); return; end;5 X% m$ ?" p6 m
if (a==1), Faf(shft,1) = fft(f(shft))/sN; return; end
/ t0 e! R' J4 P/ i* m0 Yif (a==3), Faf(shft,1) = ifft(f(shft))*sN; return; end % reduce to interval 0.5 < a < 1.5
: E5 l1 E* v0 Q" e7 Dif (a>2.0), a = a-2; f = flipud(f); end1 l0 R) k% A, z
if (a>1.5), a = a-1; f(shft,1) = fft(f(shft))/sN; end
! b. M7 }. `1 B5 O" e5 wif (a<0.5), a = a+1; f(shft,1) = ifft(f(shft))*sN; end % the general case for 0.5 < a < 1.5
K6 ?9 a+ G) ~alpha = a*pi/2;
$ b9 Z2 a( P7 \. |* ]3 \- Otana2 = tan(alpha/2);+ B1 T: B, d4 r: ~! c- W7 P3 w# _
sina = sin(alpha);
9 g5 U$ k8 @3 r0 @/ ?. Xf = [zeros(N-1,1) ; interp(f) ; zeros(N-1,1)]; % chirp premultiplication
( E) b4 A# c* Mchrp = exp(-i*pi/N*tana2/4*(-2*N+2:2*N-2)'.^2);+ ?3 W) l8 s1 K S/ P
f = chrp.*f; % chirp convolution
! c1 n; v$ D* W+ \3 mc = pi/N/sina/4;8 X* D* y! w, t" @$ ?
Faf = fconv(exp(i*c*(-(4*N-4):4*N-4)'.^2),f);' {1 f# `$ Z, w9 K- u7 N# d( a K
Faf = Faf(4*N-3:8*N-7)*sqrt(c/pi); % chirp post multiplication. G1 [# B2 q- C/ r% i: U2 J
Faf = chrp.*Faf; % normalizing constant5 b; Y% U1 A0 Y# o2 N) N$ w
Faf = exp(-i*(1-a)*pi/4)*Faf(N:2:end-N+1); %%%%%%%%%%%%%%%%%%%%%%%%%" d, `8 S% r: ?$ K! f% b
function xint=interp(x)
0 ^' ?+ c/ N+ f" E" H% sinc interpolation N = length(x);
& \8 w0 i6 J( e' fy = zeros(2*N-1,1);( L8 e; v6 n$ ~% r
y(1:2:2*N-1) = x;
7 O. m S# @$ ?; f" i) p7 l' mxint = fconv(y(1:2*N-1), sinc([-(2*N-3) 2*N-3)]'/2));' Y/ v" h2 ^. E
xint = xint(2*N-2:end-2*N+3); %%%%%%%%%%%%%%%%%%%%%%%%%
: |5 j7 S5 u* ~' ^4 n* f6 lfunction z = fconv(x,y)5 M! r" V E* q+ W
% convolution by fft N = length([x( ;y( ])-1;% s" ?* k+ p4 w$ k$ W
P = 2^nextpow2(N);
5 M. d5 U. }5 D' k: Uz = ifft( fft(x,P) .* fft(y,P));0 A2 ?1 E& T4 l2 S8 U8 g" h
z = z(1:N); 8 x4 {/ `9 v: j5 j$ G
. C2 ]5 O( k2 V3 h9 f' M2 e
|