TA的每日心情 | 开心 2019-11-19 15:19 |
---|
签到天数: 1 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
7 s8 j7 C& g, Z
# v2 n& n/ i/ e7 L
2 a! c8 x7 v# a% _9 h摘要:在分析双线幅度法(Rife)、修正双线幅度法(MRife)、傅里叶系数插值迭代3 种算法的基础上,结合FPGA的并行处理优势,将迭代变为并行运算,由此得出了一种 快速频率估计算法。并将新算法进行FPGA设计,给出了算法流程图。仿真结果表明, 当Rsn>-14 dB时,新算法的频率估计均方误差接近卡拉美-罗限(CRB)。 关键词:频率估计;迭代;卡拉美-罗限;FPGA器件 对被噪声污染的正弦波信号进行频率估计是信号参数估计中的经典问题,目前国 内外已提出不少方法。文献给出了在高斯白噪声中对正弦波信号频率进行最大似然估 计算法,该算法能够达到卡拉美-罗限(CRB),但计算量大,实现困难。FFT频率估计方 法具有速度快、便于实时处理的特性而得到了广泛应用。但FFT频率估计方法得到的是 离散频率值,当信号频率与FFT离散频率不重合时,由于FFT的“栅栏”效应,信号的 实际频率应位于两条谱线之间。显然仅仅利用FFT幅度最大值估计信号频率难以满足精 度要求,因此各种插值算法应运而生。
' L" `5 V5 ]$ t0 R, O G- j, I9 k6 _
6 |2 d$ N9 B8 w) n文献给出了Rife算法,在对输入信号进行一次 FFT运算后,利用最大谱线及其相邻的一根次大谱线进行插值来确定真实频率位置。当 信号的真实频率处于两相邻量化频率之间的中心区域时,Rife算法精度很高,但是在 FFT量化频率附近的误差却较大。文献提出了一种修正Rife算法,通过对信号进行频 移,使新信号的频率位于两个相邻量化频率点的中心区域,然后再利用Rife算法进行 频率估计。文献提出了基于傅里叶系数插值迭代的频率估计方法,该方法能够有效提 高精度,但需要多次串行迭代,不利于发挥FPGA并行处理的优势。本文分析了以上3种 算法的特点,并以之为基础结合FPGA的并行处理优势,提出了一种利用信号FFT插值系 数的幅度和相位信息来构造频率修正项的新算法。 ! m$ g4 h2 X$ k$ A+ }
|
|