EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
+ d+ E" v7 q' Q1 h9 n9 e
传输线 巴伦
( G9 {, }4 s: f% e5 ] 8 L/ @; l& }0 x# E! o0 L8 @) y6 |
8 u; m7 _. P+ F7 T$ R* _8 j
1.基本原型:0 v! M0 |. _+ J B, ?/ L6 Y$ a
3 v: B, \$ ^7 w$ Q
! Y* K l$ U- A9 _, Z( T2.最佳传输条件:/ w/ ^( O: Q% G4 F; m& Q
) }' ^( Q! u" B) g
2 a! v! m6 U' D8 R8 w4 c- q* d; n
2.2 传输线长度l应尽可能地小,工程设计中一般取<λ/8
3 t/ X! g' q# s" m, Z
# \3 j6 P9 l9 V4 V3.相关公式 z3 P$ j' k; ?2 \7 t* }* C
3.1传输损耗公式:# M9 a# z) N2 S: h, V
+ F( x/ P" }* I6 _/ F5 q$ Y1 G/ G: C
- G- V- i+ V, E) \! T
* ?4 |& G5 ^! B: R4 h* V+ `3.2反射损耗公式为: 9 l' s9 F; ?( q/ ?" s8 k
e* L! `* C: m$ s
* ` e& V- W5 a9 W" s! J3 |式中。Rg为源阻抗。L0为空芯绕组电感,μ’为磁导率实部, μ”为磁导率虚部。磁损耗角正切tanδm=μ”/μ’。选择μ’高、tanδm大的材料能够 同时满足传输损耗、反射损耗的指标要求。
9 \% j. G \+ N& y9 x 8 F/ |; X1 Q7 F4 A/ k* _7 i' Q
3.3磁导率! g P; A4 v9 U# j8 {. t
铁氧体磁芯磁导率随频率变化的影响: . {: O/ g% J, _0 k9 ?
磁导率随频率 变化的公式为
. O7 g7 F7 _% g! s
3 c0 x# Y: c/ ~; \4 N7 A
+ _% e/ q- {. v3 }% W' L ) z$ l/ L3 t9 l0 \ l% m; w0 t$ `. a
式中,S为斯诺克常数,,fr为截止频率。 $ a0 n( q+ `/ X
" l T4 Y; w* l n
将上式代人传输损耗公式进行分析得知应选择截止频率低、斯诺克常数高的磁芯材料。
" {& N) [" R1 f9 b6 B: \
! m0 @7 [/ U% P8 H. w综上所述,可以得出磁芯材料的选取原则是要求低频初始磁导率μ’高、截止频率fr低、斯诺克常数S 高、损耗大tanδm的材料。
: W% D; H8 C! x' O* Q U+ M c ! n4 a. g6 o% m- G2 X+ f- Y. I
7 y V; e* o, {9 w9 z/ n6 k/ s5 y * Q- _3 j, H. Y; A# @
4.ADS 中低端巴伦模型6 E, Q- v+ I8 {5 P1 @0 c' D
- O6 U* C0 w1 R# X9 B
BALUN1 (Balanced-to-Unbalanced Transformer (Ferrite Core)) . U# {2 h ^9 H6 w
Symbol
& u+ u0 S# b# K) f+ \8 Y' o+ x! `6 A* k& I( Y T$ B
Range of Usage 8 x+ k r* \8 C! B3 g4 \" D
Z > 0, Len > 0, AL > 0- c/ t% o _% T+ v
K ≥ 19 W2 J6 ~9 H4 P) K9 O( z: B
A ≥ 0
6 I6 y$ v. a! F8 AF ≥ 05 @* W$ O2 c' _! |
N ≥ 1 6 L* t* a( p( o4 ]$ J' S% m
Parameters $ r: }, @1 l8 O! m! y u5 |( V0 D
Name | Description | Units | Default | Z | Characteristic impedance of transmission line | Ohm | 50.0 | Len | Physical length of transmission line | mil | 12.0 | K | Effective dielectric constant(有效介电常数) | None | 2.0 | A | Attenuation (per unit length) of transmission line | dB/meter | 0.0 | F | Frequency for scaling attenuation | GHz | 1.0 | N | Number of turns | None | 5.0 | AL | Inductance index(电感指数) | nH | 960.0 | TanD | Dielectric loss tangent (介质损耗角正切) | None | 0 | Mur | Relative permeability (相对磁导率) | None | 1 | TanM | Magnetic loss tangent(磁损耗正切) | None | 0 | Sigma | Dielectric conductivity (介电导电率) | None | 0 | Temp | Physical temperature | °C | None |
+ s& c$ O$ H* e5 J) ~· This component is a length of transmission line(specified by Z, Len, K, A and F) coiled around a ferrite core. 7 g' E0 D3 [- A' N- l& b. K6 G5 X
Choking inductance Lc accountsfor low-frequency roll-off and is given by; R \/ A8 }, s$ j$ r O
Lc = N2 × AL
9 Q% a, P u) _; FA(f) = A (for F = 0)
}- J# k1 G* p) b' s) l. P, tA(f) = A(F) × file:///C:/Users/wanghai/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png
% b! S2 r( n7 p. c% o, i(for F ≠ 0)
( c- l& Q# d twhere5 S. E# f* P0 J, v. p
f = simulation frequency
) x' p X" J; s$ @( Y, M0 ~" uF = reference frequency for attenuation
9 v, j) F2 L: H# v. T: IFor time-domain analysis, an impulseresponse obtained from the frequency-domain analytical model is used. Thiscomponent has no default artwork associated with it.
! ^7 v5 s- I, c! ]% I8 O· The "Temp" parameter is only used in noisecalculations.
4 D' O0 a+ V, }5 T· For noise to be generated, the transmission line must belossy (loss generates thermal noise).
/ k, V* V9 R3 @* }8 O: t
4 u( q$ X' u6 o2 S% S1 p , p' {- ?' m: U5 S9 L4 Q9 k
5.小节:
4 w; f2 f" o3 `9 x* S D) {9 F/ ~调节ADS 中的参数可以仿真出巴伦对应的传输损耗;
5 l+ }% E/ ]' @ ?介电常数环节需要进一步讨论;. , e3 w( p1 Q0 u; A
2 e" t! P% n' _2 V# i$ l" h* c# G& y! b v$ v# M! a4 F, H( ~
|