EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
% F; [. d$ d8 F$ Y+ [$ H2 {传输线 巴伦
4 ^8 J4 I }3 l1 Y1 Z* ^
2 Y: m8 s) d4 E# s/ j' [4 W& s ! D9 p8 j; W" T" w# N
1.基本原型:/ {6 Q, u5 k, d7 B: L
; X* b% \7 y) U % N6 N2 q7 E) i
2.最佳传输条件:- `; q8 x. d% c
. @( Q. P; Q6 Y
( e( t$ M N, n; m# P
2.2 传输线长度l应尽可能地小,工程设计中一般取<λ/8 " y: b, [# D0 M! o# j- o; h
, N/ Q2 B* ]5 Y- V* |
3.相关公式7 s* N: e% g# |6 \; w
3.1传输损耗公式:
( `7 B* A7 Y) R4 g6 V
1 }* s+ _% `" F$ c6 C
4 v+ ~' F% n6 }6 g% ]( b 2 B- @2 r2 Y9 ?
3.2反射损耗公式为:
5 B4 s; m! n. F8 ^, E& Z, X! t5 b4 ]6 o/ {9 f
- w4 Z2 A- ]3 |1 ]. H1 \: e
式中。Rg为源阻抗。L0为空芯绕组电感,μ’为磁导率实部, μ”为磁导率虚部。磁损耗角正切tanδm=μ”/μ’。选择μ’高、tanδm大的材料能够 同时满足传输损耗、反射损耗的指标要求。
# P, F0 a, O+ Z% d( c; G2 R u
1 B$ _& k7 c9 `* V7 `3.3磁导率0 m% e) V! T4 T4 e" z. C5 G
铁氧体磁芯磁导率随频率变化的影响:
. R. }8 {6 Y& E5 H- K! y" X磁导率随频率 变化的公式为 . m& J. U& {- x+ w& s# T
3 f& }. C2 p0 E# f
6 E) s8 `3 M& f/ A. C! r; G& y 1 N, s- p% E; i8 v" b% u5 q
式中,S为斯诺克常数,,fr为截止频率。 . {$ t# p8 u) }& |9 q
N/ K9 g) h0 t2 n2 H& w将上式代人传输损耗公式进行分析得知应选择截止频率低、斯诺克常数高的磁芯材料。
# P9 D3 U% U0 I! \! V+ H
! T z$ n1 {/ m5 J: Z综上所述,可以得出磁芯材料的选取原则是要求低频初始磁导率μ’高、截止频率fr低、斯诺克常数S 高、损耗大tanδm的材料。 . s& @* G0 o! E/ k' A$ s
6 j& `3 `/ E! Z. W4 K
/ o& h: {! e8 w0 t: d1 j
! W' Q$ @1 R+ c+ J8 V- W3 r4.ADS 中低端巴伦模型
5 r" h; p1 }. s3 P8 R3 i
" V) Y, `6 |' \ Q4 `* ~8 QBALUN1 (Balanced-to-Unbalanced Transformer (Ferrite Core)) 6 W* S0 z% {/ d& ], A5 _1 i+ [
Symbol ) u1 r4 ?3 J. K! v, |0 N+ s! g
: N% Y! M2 x+ y/ }Range of Usage
5 ~$ s5 v+ E6 s S/ KZ > 0, Len > 0, AL > 0! f( V. T8 O' A* `# E& Z3 M& a5 o
K ≥ 1, v- V# ~# T1 {" D" b. B* p8 J
A ≥ 0
( |$ S9 u; `0 _8 |F ≥ 0! e4 j8 z; N9 X4 l
N ≥ 1
+ [2 ]# ~+ H& }/ x3 q& {) a. I/ hParameters * [6 ~; w3 b" \
Name | Description | Units | Default | Z | Characteristic impedance of transmission line | Ohm | 50.0 | Len | Physical length of transmission line | mil | 12.0 | K | Effective dielectric constant(有效介电常数) | None | 2.0 | A | Attenuation (per unit length) of transmission line | dB/meter | 0.0 | F | Frequency for scaling attenuation | GHz | 1.0 | N | Number of turns | None | 5.0 | AL | Inductance index(电感指数) | nH | 960.0 | TanD | Dielectric loss tangent (介质损耗角正切) | None | 0 | Mur | Relative permeability (相对磁导率) | None | 1 | TanM | Magnetic loss tangent(磁损耗正切) | None | 0 | Sigma | Dielectric conductivity (介电导电率) | None | 0 | Temp | Physical temperature | °C | None | 1 H: M! k' A0 ~; o. S$ e
· This component is a length of transmission line(specified by Z, Len, K, A and F) coiled around a ferrite core. ! U* S/ |: E2 O
Choking inductance Lc accountsfor low-frequency roll-off and is given by1 A% c' h8 q- v
Lc = N2 × AL
9 j/ D" T$ q c/ n$ q/ QA(f) = A (for F = 0)
. C, O1 j$ C! G. v4 S, CA(f) = A(F) × file:///C:/Users/wanghai/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png+ |7 @- O7 G* @2 y) ~" g- r0 E
(for F ≠ 0)
- p+ k' S+ K) W! V) Uwhere+ E$ E1 F4 j4 u
f = simulation frequency* D; J0 r. k' ?) p% _. D& `. F
F = reference frequency for attenuation
7 V7 n4 f8 a0 D4 I, q/ }" zFor time-domain analysis, an impulseresponse obtained from the frequency-domain analytical model is used. Thiscomponent has no default artwork associated with it. + ~/ B8 }, x \1 n, L
· The "Temp" parameter is only used in noisecalculations. 9 B, c& _: S' _: w
· For noise to be generated, the transmission line must belossy (loss generates thermal noise). - J7 s. z! f, X7 Z# i
! e4 x6 R+ S8 Q" V( b+ g
" O4 d5 k) t. v9 w! l5.小节:
; t. d8 o, {6 x调节ADS 中的参数可以仿真出巴伦对应的传输损耗;
6 v. R8 }. F/ c. i8 y! R介电常数环节需要进一步讨论;. ' l7 X/ k- q, h Q$ x
$ Q6 e6 M Z9 c, v' p2 k2 L: c
1 S# U2 P- ^" B( h. n9 O |