EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
# ]4 s: w3 P I9 a6 u! F1 \3 p
传输线 巴伦5 r% s3 ]+ }' a* d- |+ ?# W$ }
& e& k0 s1 N1 k5 C5 l
4 W( t; q1 m* D% ~( M$ y
1.基本原型:3 b6 A6 W0 o' M9 C( u8 d$ K
& U1 A) \1 l! J, {
3 ^) m, C/ I3 d$ j, B
2.最佳传输条件:
( s/ b: e; ? k- D1 I2 Z/ o+ Z6 c2 x# u+ [! j
7 L2 [( b. R0 {* L v5 V
2.2 传输线长度l应尽可能地小,工程设计中一般取<λ/8
$ c4 n9 Q2 M: G) I' x0 x: E! b - ^1 h3 { O$ E. m
3.相关公式
7 ?7 Y7 F5 |7 b( `/ R8 U& C& v3.1传输损耗公式:: v1 _% S9 V1 S9 Q M- _' T! O
6 r* w6 C9 ]! Y/ Z2 z
9 Z" c* N6 S8 V' w# M, i
( P" p1 O* T: O3 s3.2反射损耗公式为:
% g( Z$ u- G* _+ _# ?4 B( P; V7 a5 ~2 _' v; _) S+ C. D, P
; h/ ]5 _+ N6 D7 z0 f% `式中。Rg为源阻抗。L0为空芯绕组电感,μ’为磁导率实部, μ”为磁导率虚部。磁损耗角正切tanδm=μ”/μ’。选择μ’高、tanδm大的材料能够 同时满足传输损耗、反射损耗的指标要求。 6 V% y5 u& G P6 b7 n2 q% @ G2 H
+ n) `. I1 a1 w4 ]9 o) R3 ~
3.3磁导率5 T" ^' v8 K, d4 M
铁氧体磁芯磁导率随频率变化的影响: 2 Q4 T5 _9 o4 d' R8 ?. t
磁导率随频率 变化的公式为 # x# o" {, h% D
% e8 q; b" a% `6 j" C5 |* k9 O+ @! Z2 `- c' I: K6 l
' M4 W1 m, A$ ], h
式中,S为斯诺克常数,,fr为截止频率。 * r) ^ Z X) n3 H B
0 B3 f8 g) N/ A4 d7 B, Z9 X( [
将上式代人传输损耗公式进行分析得知应选择截止频率低、斯诺克常数高的磁芯材料。
( _/ c: ?4 b/ r! ~ * u: n0 S) L) T
综上所述,可以得出磁芯材料的选取原则是要求低频初始磁导率μ’高、截止频率fr低、斯诺克常数S 高、损耗大tanδm的材料。 4 u* e; Z. g3 R- W* [8 T
7 d* y8 P/ j2 f1 j
8 R E! J" j; F" U8 i3 [% o , J) t) b E$ a0 {
4.ADS 中低端巴伦模型
' M6 x. v1 k1 |2 ]- h7 B( b* D 4 z) i0 k0 g2 R( |6 X1 j ]
BALUN1 (Balanced-to-Unbalanced Transformer (Ferrite Core))
" s; I! R4 x! P0 [Symbol
: Y& I3 w3 c7 D$ f% e# a, r3 n3 G F4 h/ z8 N* U$ u
Range of Usage / V+ c, F2 ~$ g+ [ _
Z > 0, Len > 0, AL > 0, x" y- ~. B2 x+ R, C9 h
K ≥ 1% p6 T; B8 t( G5 L% i! p. f" i8 u
A ≥ 06 q5 {4 a3 a% p
F ≥ 0
! L6 V; m6 k3 U3 y$ Z4 x, iN ≥ 1 6 ^3 r+ Q- \/ {5 c
Parameters
7 O7 t* g0 o8 B2 \: l( O t0 ?; `& A| Name | Description | Units | Default | | Z | Characteristic impedance of transmission line | Ohm | 50.0 | | Len | Physical length of transmission line | mil | 12.0 | | K | Effective dielectric constant(有效介电常数) | None | 2.0 | | A | Attenuation (per unit length) of transmission line | dB/meter | 0.0 | | F | Frequency for scaling attenuation | GHz | 1.0 | | N | Number of turns | None | 5.0 | | AL | Inductance index(电感指数) | nH | 960.0 | | TanD | Dielectric loss tangent (介质损耗角正切) | None | 0 | | Mur | Relative permeability (相对磁导率) | None | 1 | | TanM | Magnetic loss tangent(磁损耗正切) | None | 0 | | Sigma | Dielectric conductivity (介电导电率) | None | 0 | | Temp | Physical temperature | °C | None |
2 f# A) s7 Z2 g( E" s· This component is a length of transmission line(specified by Z, Len, K, A and F) coiled around a ferrite core. & R( x% u. B3 ~/ c4 g( N9 c! A3 A+ G6 S5 G
Choking inductance Lc accountsfor low-frequency roll-off and is given by
8 c) e4 d, X. r' p/ Y" BLc = N2 × AL+ R! o* P! }" O% p0 ^1 B4 d0 g" u
A(f) = A (for F = 0)# m2 ]7 ]/ h; S: e
A(f) = A(F) × file:///C:/Users/wanghai/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png
' K. l4 K. Q% p7 X(for F ≠ 0)
) Q3 G' \! ]6 V2 U3 Owhere
! W% D2 e' M, nf = simulation frequency! o. _: i( N0 p1 F2 E
F = reference frequency for attenuation 4 }4 G4 k6 I2 Y8 c2 l3 C# e2 o
For time-domain analysis, an impulseresponse obtained from the frequency-domain analytical model is used. Thiscomponent has no default artwork associated with it.
8 `0 ]7 Y1 p2 E2 A% [$ {· The "Temp" parameter is only used in noisecalculations.
& u/ x# z6 a" A* T: |& _· For noise to be generated, the transmission line must belossy (loss generates thermal noise). % N7 y$ J" `9 N: H$ i
9 d' T- C& D9 |7 ~* O/ M0 }7 K # G- \. w# q& x: l8 d% E. l Q
5.小节:
- Q2 E3 ~1 o7 ~" c4 m调节ADS 中的参数可以仿真出巴伦对应的传输损耗; & T- t8 P6 V; Q0 G3 z$ q
介电常数环节需要进一步讨论;. W6 J4 f9 D+ [: z
' ~# C- Z" B& T9 P
) R8 y. R; y; c# U8 {) K
|