|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
在电子行业,绿色设计(Green Design)是业界关注的重点。除了降低能耗,业界正越来越多地限制在连接器外壳中使用某些卤素作为阻燃剂。支持下一代绿色设计(Green Design)的内存器必需满足提高性能,增加功率密度,改进可靠性,降低功耗并避免使用有害物质等诸多要求,这就是今年市场推出最新一代SDRAM计算机内存器DDR4的背景情况。; _" u. F4 E S* p, d& |
本文探讨了各种不含卤素(halogen-free)的DDR4插座的开发工作,并且根据严格的JEDEC DDR4规范和IEC 61249-2无卤素依从性,讨论了不同的外壳材料选项。我们检测了各种高性能聚合物,比如液晶聚合物(liquid crystal polymer, LCP)、聚酰胺PA4T和不同的聚邻苯二甲酰胺(polyphthalamide, PPA),并且重点探讨与关键参数相关的特性,比如连接器可靠性、针脚保持力、翘曲,以及匹配PCB的线性热膨胀系统(CLTE)。' c$ i) j) ~2 n$ r$ n
3 |0 |. H. z2 u0 o: I![]()
+ B+ V* O* H6 d V图1:根据各种选项总结的DDR要求和材料特性
% _/ H# B" |( j7 O. |0 y( }图 1(左)所示为同时用于SMT和超低侧高(ultra-low-profile, ULP) DDR4连接器测试的材料。对于DDR4应用,回流焊接期间的零起泡和优秀的共面性(co-planarity)是两个关键的合格要求 (qualifier) (简写Q),这两项设计要求外壳材料具有最高的热性能和机械性能。图1(右)所示为PTH和压入配合设计的相同视图。关键的合格要求就是波峰焊期间不起泡和出色的共面性。其它较不重要的设计参数就是所谓的差异要求 (differenTIator) (简写D)。
* m% O3 y/ u, UDDR4连接器端接方法
4 B8 S, X* y& C端接是指用于连接一个端子和一个导体的方法,良好的端接确保稳固的电气接触,气密连接则防止腐蚀。DDR4连接器的常用端接方法有:2 `# f* e0 X& e' @/ i; q6 Z& C6 W+ _
●表面安装技术 (SMT) (这是设计趋势)
# T% V# O6 i' ~" b. i& {●针脚通孔(PTH) (目前的主流技术)
) N( b2 |1 O/ ^●通孔回流焊(Pin in Paste) (主要用于一体式PC)7 [; t3 V+ Z W7 K/ g
●压入配合 (主要用于电信)
S; m& ~0 c& H1 k. d: Y
4 x' ?" k4 i# c8 L1 U![]()
# b4 A, V' ^% j图2:DDR4设计中的多种组装技术: Y3 ]$ b- z# K: z% p
连接器设计细节上的差异可以直接引发外壳材料的选择问题。例如,通孔回流焊(Pin-In-Paste)和表面安装(SMT)设计必须采用极高温塑料,因为它们在装配期间必须经受回流焊步骤。这种连接器完全符合RoHS标准要求,暴露在260-280℃范围的无铅 (lead-free)安装温度。连接器外壳选择材料必须具有极端的机械和热性能,以承受约10秒的峰值温度。而且,材料必须适当平衡低吸湿性和高表面张力,避免了高温红外回流焊(IR-reflow)工艺期间形成所谓的气泡。9 T, b1 G; L1 \3 Y W
以上要求对于PTH设计来说则较为不重要,因为在PTH设计中PCB在装配期间用作热屏蔽。这类连接器外壳的有效暴露温度大约比回流焊的降低15℃。
3 T! h! E# D2 I/ u6 \4 q3 N通孔回流焊(Pin-in-paste)基本上是回流焊和引脚通孔(PTH)连接器设计的结合,实际装配仍然在回流焊过程中进行。压入配合装配期间不会暴露在这样的温度下,因此原则上可以使用各种低温塑料。然而,由于大多数OEM厂商喜欢在所有设计中都用上DDR连接器等组件,所以最佳的成本和设计,以及供应链灵活性都不得不取决于是否选择高温塑料。. ` V+ g" t; ?7 m
连接器翘曲
/ N4 a T' o2 Z4 L% z8 x当连接器被焊接到PCB上而失去共面性时,就会发生连接器翘曲 (warpage) 情况。此类翘曲是一种复杂的现象,受各种参数影响,比如用于连接器外壳的材料热变形温度(heat distorTIon temperature, HDT)、塑料壳体和PCB之间比较热膨胀系数(compareTIve thermal expansion, CTE)的不同,以及外壳材料的流动性,以及外壳注塑成型期间产生的相关应力。
1 g7 k' K# U% g( F& a+ X) P线性热膨胀系统(CLTE)
2 R( O/ t& @- q为了在FR4或最新的无卤素 (halogen-free) PCB上达到良好的连接器共面性,必须尽量使线路板和连接器外壳材料间的CLTE匹配。另外,需要结合负载下的高硬度和高变形温度(high deflecTIon temperature, HDT),确保回流焊后低翘曲。
: i/ j) V# f3 r0 u; |3 I" b* R% _4 o流动性
/ n/ j' B4 G+ m' ~: J! t5 I+ u: r为了生产高品质DDR4连接器,同时保持OEM厂商可承担的成本,制造商寻找的外壳材料需具有尽可能大的流动性,并满足其它关键设计要求如共面性。使用高流动性材料在注塑成型工艺中填充了高数量的模腔(cavity)。而且,通过注塑机的单一注射,可以生产更多的外壳,从而降低制造成本。同时,使用高流动性材料意味着外壳的应力耐受较小,因为连接器装配期间在较高暴露温度下的应力较小。结果,连接器可能会翘曲,而特别地,两端的信号针脚可能失去与PCB的电气连接,从而产生远远超过制造成本的高维修成本。# } q- k7 i, S- [) Z
传统上,当注塑厂商或连接器制造商寻求高流动性材料时,液晶聚合物(LCP)通常是首选材料。- k5 b b V1 F
& d Z; X1 x }![]()
c: D3 |0 i+ @$ R/ W" O1 n1 d图3:各种绝缘材料的流动性5 y) i$ O+ B U
图 3 所示是为DDR4连接器测试的各种材料的流动长度。流动性水平越高,填充模腔越容易,并且可以在注塑期间使用更多的模腔。红线表示用于PTH外壳的8模腔设计的最低流动性水平,以及用于ULP或SMT外壳的4模腔设计的最低流动性水平。蓝线以下的材料具有极小的余量,无法实现高模腔模具设计,或者在批量生产期间带来重大的处理问题。从流动性的角度来看,LCP显示了最佳的性能,其次是PA46、PA66和PA4T。! F- O: ^+ ]6 b! K0 V1 {
虽然LCP具有出色的流动性,并且能够达到DDR3及前代产品可接受的要求,但从DDR4开始,所有的LCP材料都受到翘曲问题困扰,原因是DDR4连接器具有显着提高的设计复杂性、更薄的壳壁、更小的宽度和高度,以及更多的针脚数目。- p" i0 l; H/ |5 v( x
图4显示DDR4连接器在装配前后的翘曲,上面的是LCP材料;而下面的是PA4T和PA46材料。在注塑时,两种材料所生产的翘曲都差不多。然而,在组装到PCB上后,LCP外壳表现出了明显的翘曲,在翘曲方向上有变化,使设计中的任何预测和翘曲校正几乎不可能实现。为了响应这个问题,LCP材料供应商现在提供了较新的LCP/PPS混合材料,其中PPS的更高硬度可改善某些弯曲,并已用于DDR3,但仍不能满足DDR4所要求的共面性等级。
4 {4 X; o- |' v. i, P" I8 K' a$ W: | i# G8 M4 y0 V* _
![]()
* z& ]# f9 b) W1 d7 A7 ?图4:焊接到PCB上的DDR连接器的翘曲影响9 M. s8 J" a; m0 S
图4下面的部分是采用PA4T或PA46材料的DDR4外壳,装配后的翘曲显着降低,远低于0.1 mm规范。此外,两种聚酰胺都没有显示出翘曲方向的任何变化,能够实现良好的翘曲预测和校正。
! G. x: _5 H2 u; }6 p1 S. ~+ p' `HDT在DDR4连接器的可靠性上还具有非常重要的作用。在装配到PCB上时,过低的HDT会导致连接器侧壁轻微塌陷。此塌陷将增加所需要的内存模块插拔力。在插座的插拔期间,连接器的薄弱部分可能会出现裂缝;或插拨次数会大幅减少。图6所示为连接器侧壁的此类塌陷。. d0 m! F3 N. N4 X
2 B) B1 Q/ a- H, h% A, i2 I. d . ^. O* y$ V! _! b9 N+ ~" p
图5:不同聚合物的HDT-A (1.8MPa)0 k' R1 C! g0 `4 L
需要达到蓝色部分的温度范围,确保低翘曲和避免连接器侧壁的塌陷。
% ~7 T& s1 e$ E要求塑料材料具有高HDT,只有PA46 和PA4T材料具有保持高可靠性所需的高温度范围。
# N! D, b' u/ C: b. {1 j8 j' qDB连接器标准型 D-sub 车针 D-sub 高密度D-sub 防水型D-sub 混合型D-sub D SUB配件 D SUB线材 % v9 z5 O% E5 l+ Q
0 `+ [ p& }0 R7 ~8 Y6 k7 _# Y
) ]/ z) c6 m0 o1 \' [( g+ w5 y2 F/ _4 d; i ?7 L
本文来源:https://www.elecbee.cn/& T7 P+ ^1 @5 E% R. [1 R
1 u8 y+ j6 ^/ M8 z
|
|