|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
, z& M/ d: ], a+ z8 m, E3 u* k2 g1 x+ ]9 S
“ 乒乓操作 ” 是一个常常应用于数据流控制的处理技巧,典型的乒乓操作方法如图 1 所示。
) y/ ]9 P* k( q; O6 Y0 L: v
0 n% U6 H1 ]6 I! k9 R4 R乒乓操作的处理流程为:输入数据流通过 “ 输入数据选择单元 ” 将数据流等时分配到两个数据缓冲区,数据缓冲模块可以为任何存储模块,比较常用的存储单元为双口 RAM(DPRAM) 、单口 RAM(SPRAM) 、 FIFO 等。在第一个缓冲周期,将输入的数据流缓存到 “ 数据缓冲模块 1” ;在第二个缓冲周期,通过
! @5 T- g; a$ j+ d7 S2 r0 e0 f
3 j, n |9 `1 P- ^ |3 T1 ]“ 输入数据选择单元 ” 的切换,将输入的数据流缓存到 “ 数据缓冲模块 2” ,同时将 “ 数据缓冲模块 1” 缓存的第 1 个周期数据通过 “ 输出数据选择单元 ” 的选择,送到 “ 数据流运算处理模块 ” 进行运算处理;在第 3 个缓冲周期通过 “ 输入数据选择单元 ” 的再次切换,将输入的数据流缓存到 “ 数据缓冲模块 1” ,同时将 “ 数据缓冲模块 2” 缓存的第 2 个周期的数据通过 “ 输出数据选择单元 ” 切换,送到 “ 数据流运算处理模块 ” 进行运算处理。如此循环。
$ b6 R9 C a7 w# O
4 ^# A" c3 c3 V. Z1 i* ?% \ |; p# o; |9 j" j
, h' [% ^- Y$ E
乒乓操作的最大特点是通过 “ 输入数据选择单元 ” 和 “ 输出数据选择单元 ” 按节拍、相互配合的切换,将经过缓冲的数据流没有停顿地送到 “ 数据流运算处理模块 ” 进行运算与处理。把乒乓操作模块当做一个整体,站在这个模块的两端看数据,输入数据流和输出数据流都是连续不断的,没有任何停顿,因此非常适合对数据流进行流水线式处理。所以乒乓操作常常应用于流水线式算法,完成数据的无缝缓冲与处理。
! H% Y5 ~/ y9 Q7 X t) Q0 q4 H0 n! ^4 |; W
乒乓操作的第二个优点是可以节约缓冲区空间。比如在 WCDMA 基带应用中, 1 个帧是由 15 个时隙组成的,有时需要将 1 整帧的数据延时一个时隙后处理,
2 p) ]: g4 \; ~+ w+ A0 a
- G/ q3 F; @# ?; I$ n8 y
, G9 N M2 {" _! {* z% m. A比较直接的办法是将这帧数据缓存起来,然后延时 1 个时隙进行处理。这时缓冲区的长度是 1 整帧数据长,假设数据速率是 3.84Mbps , 1 帧长 10ms ,则此时需要缓冲区长度是 38400 位。如果采用乒乓操作,只需定义两个能缓冲 1 个时隙数据的 RAM( 单口 RAM 即可 ) 。当向一块 RAM 写数据的时候,从另一块 RAM 读数据,然后送到处理单元处理,此时每块 RAM 的容量仅需 2560 位即可, 2 块 RAM 加起来也只有 5120 位的容量。/ K5 \9 J0 {( O
9 v! E" t& d( V' T
另外,巧妙运用乒乓操作还可以达到用低速模块处理高速数据流的效果。如图 2 所示,数据缓冲模块采用了双口 RAM ,并在 DPRAM 后引入了一级数据预处理模块,这个数据预处理可以根据需要的各种数据运算,比如在 WCDMA 设计中,对输入数据流的解扩、解扰、去旋转等。假设端口 A 的输入数据流的速率为 100Mbps ,乒乓操作的缓冲周期是 10ms 。以下分析各个节点端口的数据速率。) x$ A% Z" Y0 l) r! H' b
" [1 D; [- Q8 s) J$ x
A 端口处输入数据流速率为 100Mbps ,在第 1 个缓冲周期 10ms 内,通过 “ 输入数据选择单元 ” ,从 B1 到达 DPRAM1 。 B1 的数据速率也是1 S7 G3 p ~/ H' @
1 n( ]% b2 i5 v1 p. C100Mbps , DPRAM1 要在 10ms 内写入 1Mb 数据。同理,在第 2 个 10ms ,数据流被切换到 DPRAM2 ,端口 B2 的数据速率也是 100Mbps , DPRAM2 在第 2
3 h# p2 ]; q I, V$ K
9 C4 Q3 B" _; H个 10ms 被写入 1Mb 数据。在第 3 个 10ms ,数据流又切换到 DPRAM1 , DPRAM1 被写入 1Mb 数据。
- p1 y5 _. ]9 w/ a4 h1 b
- y4 f) S* V, k0 J# }# k- w2 Q仔细分析就会发现到第 3 个缓冲周期时,留给 DPRAM1 读取数据并送到 “ 数据预处理模块 1” 的时间一共是 20ms 。有的工程师困惑于 DPRAM1 的读数时间为什么是 20ms ,这个时间是这样得来的:首先,在在第 2 个缓冲周期向 DPRAM2 写数据的 10ms 内, DPRAM1 可以进行读操作;另外,在第 1 个缓冲周期的第 5ms 起 ( 绝对时间为 5ms 时刻 ) , DPRAM1 就可以一边向 500K 以后的地址写数据,一边从地址 0 读数,到达 10ms 时, DPRAM1 刚好写完了 1Mb 数据,并且读了 500K 数据,这个缓冲时间内 DPRAM1 读了 5ms ;在第 3 个缓冲周期的第 5ms 起 ( 绝对时间为 35ms 时刻 ) ,同理可以一边向 500K 以后的地址写数据一边从地址 0 读数,又读取了 5 个 ms ,所以截止 DPRAM1 第一个周期存入的数据被完全覆盖以前, DPRAM1 最多可以读取 20ms 时间,而所需读取的数据为 1Mb ,所以端口 C1 的数据速率为: 1Mb/20ms=50Mbps 。因此,/ P7 H. C" }% x0 p* \
, q6 ]# g9 ^! A7 n( ^( \1 c“ 数据预处理模块 1” 的最低数据吞吐能力也仅仅要求为 50Mbps 。同理, “ 数据预处理模块 2” 的最低数据吞吐能力也仅仅要求为 50Mbps 。换言之,通过乒乓操作, “ 数据预处理模块 ” 的时序压力减轻了,所要求的数据处理速率仅仅为输入数据速率的 1/2 。, x% M& f1 e& I2 p
, D a2 b& M1 ^5 y9 t! t
) x5 s; J! E8 D% l/ |+ a) w2 [+ E n0 l. L通过乒乓操作实现低速模块处理高速数据的实质是:通过 DPRAM 这种缓存单元实现了数据流的串并转换,并行用 “ 数据预处理模块 1” 和 “ 数据预处理模块 2” 处理分流的数据,是面积与速度互换原则的体现 |
|