找回密码
 注册
关于网站域名变更的通知
查看: 1060|回复: 3
打印 上一主题 下一主题

EMC精品书籍分享贴

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2018-12-23 22:33 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
1.电磁兼容导论英文版
( z0 x2 R# E" C% f4 C7 M《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。0 }  \* j5 G' y" Y: O  B- t
本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。, v% Z& h# I5 S( v8 u9 E

! T  y: d; E# G2 eContents
% W$ h( i& G: R' ~0 Q6 D7 {3 PPreface xvii7 V% B; X5 d  y7 c
1 Introduction to Electromagnetic Compatibility (EMC) 1
" q9 ]1 ?6 O5 m7 k1.1 Aspects of EMC 3' q; C2 [/ L! E" [. O
1.2 History of EMC 10: {  M* O2 m) K
1.3 Examples 129 J7 T6 \+ [, E) ?% i7 M
1.4 Electrical Dimensions and Waves 14
# @& P. J0 X5 H1.5 Decibels and Common EMC Units 23& E$ m1 k! i* X6 ]( g( ^5 d6 ?
1.5.1 Power Loss in Cables 32
% s% u& \3 M1 R" D  |9 D1.5.2 Signal Source Specification 37
$ |/ {! M! G& O$ k/ ?7 F* SProblems 432 S# _+ K0 Q& D, E  |
References 48
1 f$ R% C* t8 d* D; F! g2 X2 EMC Requirements for Electronic Systems 49, c* D0 |4 X) _% W$ {/ p0 L6 v: v4 Y+ ~
2.1 Governmental Requirements 506 K& M! s, [0 n4 P1 T: J4 |
2.1.1 Requirements for Commercial Products Marketed
! ~4 @2 }1 P6 x. P! G* [in the United States 507 h8 d6 `; |4 `
2.1.2 Requirements for Commercial Products Marketed: r4 H. h5 u% G3 Y
outside the United States 55) O% F0 |' }6 l# ?6 `$ Q# K% E
2.1.3 Requirements for Military Products Marketed in the
/ B1 a0 S+ Y" k2 A4 m, ?United States 60
3 O1 I# @1 R. C2.1.4 Measurement of Emissions for Verification of Compliance 62
) {8 e* V1 {7 y1 q; J2.1.4.1 Radiated Emissions 644 V6 n, `1 M% m: G6 h
2.1.4.2 Conducted Emissions 67
) R" d, M* }" K9 ]2 m& `; b7 \2.1.5 Typical Product Emissions 72# U3 @! |9 V% I  A; i9 I
2.1.6 A Simple Example to Illustrate the Difficulty in Meeting
" M+ [! o% p) q9 ~% O0 [the Regulatory Limits 78' |7 I; w& j$ I6 z) I) f
vii3 G. ~! k9 |2 R6 H0 J! c
2.2 Additional Product Requirements 79
! V5 @  m1 t& ?/ r4 |2 H2.2.1 Radiated Susceptibility (Immunity) 81: U# W$ c; Y" @. A
2.2.2 Conducted Susceptibility (Immunity) 81. b" p( M# Y0 Y4 A/ g
2.2.3 Electrostatic Discharge (ESD) 81' H$ X1 C# ]6 I" }7 Q% A
2.2.4 Requirements for Commercial Aircraft 82
$ q* V% W- f& N/ L" k2.2.5 Requirements for Commercial Vehicles 822 y2 t7 X- [" S  A! e2 z* ~7 k
2.3 Design Constraints for Products 82. V3 q/ V4 o. }/ S3 e
2.4 Advantages of EMC Design 84
! R8 `8 k7 c6 o) U* KProblems 86
/ S8 N1 v& U% N3 g6 K- TReferences 89
* R" f! A5 D; ?* B% o4 b; f3 Signal Spectra—the Relationship between the Time Domain and) U5 k7 C# b. O% y$ O, D
the Frequency Domain 91
: M1 S: |# j/ p8 `3.1 Periodic Signals 911 ~8 Z; @9 w2 A1 y1 a( u/ ^
3.1.1 The Fourier Series Representation of Periodic Signals 94
' t+ `: u# E1 K; p8 `; g2 A3 c3.1.2 Response of Linear Systems to Periodic Input Signals 1041 S" |7 a" H( [1 b  d4 x7 ~
3.1.3 Important Computational Techniques 111* R$ N5 W/ ^. Q" v: B
3.2 Spectra of Digital Waveforms 1180 z3 w6 Q; n! [3 {* A7 d/ @1 D
3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118
  Z, u1 Y$ Q9 b% \/ o9 P/ j3.2.2 Spectral Bounds for Trapezoidal Waveforms 122
3 e8 ?0 u& a# n6 Z. |& ~3.2.2.1 Effect of Rise/Falltime on Spectral Content 123
  F0 X( S' h9 \- g3 N3.2.2.2 Bandwidth of Digital Waveforms 1323 ^; o: _: d" E$ \. a
3.2.2.3 Effect of Repetition Rate and Duty Cycle 136
  M+ |0 E7 A3 {3 J5 q2 j3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137" x& g0 ], k- n+ N" W6 P
3.2.3 Use of Spectral Bounds in Computing Bounds on the9 P; {8 D5 l' z5 [
Output Spectrum of a Linear System 140/ B5 n) @! M7 k$ A7 v& a, L
3.3 Spectrum Analyzers 1429 ?) F8 ?5 `, A! {% L
3.3.1 Basic Principles 142/ T' R6 s! R7 C* y
3.3.2 Peak versus Quasi-Peak versus Average 146
4 L. s2 ]; ]+ L/ v8 `$ q
. R9 a4 y1 u5 B4 |) `' w3.4 Representation of Nonperiodic Waveforms 148
8 S) Y' b# i# p. \+ ], H6 W3.4.1 The Fourier Transform 148
6 x( q4 T: L: H' H8 J3.4.2 Response of Linear Systems to Nonperiodic Inputs 151! o1 Q0 a, p7 C$ p& x) E' x
3.5 Representation of Random (Data) Signals 151
2 Y  K5 C7 X9 C! P8 }' {+ h3.6 Use of SPICE (Pspice) In Fourier Analysis 155! H% `$ P9 e/ U8 _5 N8 w
Problems 167
& s9 H* P7 c' G! l8 h9 ZReferences 175
+ B& W/ E$ H; Q" I7 z0 T1 c* q4 j4 Transmission Lines and Signal Integrity 177# p$ Q) s. ~5 ?3 c. Y; T2 A5 M& q
4.1 The Transmission-Line Equations 181
9 l  Q5 j* f; _/ |1 S! b3 v) }7 u4.2 The Per-Unit-Length Parameters 184
5 M2 p( c5 y. z6 R/ p8 M2 a0 q4.2.1 Wire-Type Structures 186
, o: Z) u* T8 E; Rviii CONTENTS
  O0 D- j" L- W$ L4.2.2 Printed Circuit Board (PCB) Structures 199
: {" q9 i3 t  P/ b5 w4.3 The Time-Domain Solution 2042 m6 y3 q) ^! P

" I, k+ g. c7 O2 _- U/ v4.3.1 Graphical Solutions 2043 L5 Y( f/ C' ?2 V# P
4.3.2 The SPICE Model 218
% _; Y7 L2 J- g( U2 a; x4.4 High-Speed Digital Interconnects and Signal Integrity 225
9 V) r3 |- b+ h8 l2 e  V# x4.4.1 Effect of Terminations on the Line Waveforms 230
2 H( K, v6 V7 R6 ~4.4.1.1 Effect of Capacitive Terminations 233
9 N* q4 W. C5 u# M' i7 B4.4.1.2 Effect of Inductive Terminations 2360 d  |$ Q2 L5 S0 `" t! N
4.4.2 Matching Schemes for Signal Integrity 238
9 x, B% t6 F' V. |( D- ~% Z4.4.3 When Does the Line Not Matter, i.e., When is Matching
1 R5 q+ h+ v) DNot Required? 244
6 ]7 W9 N$ [8 M4.4.4 Effects of Line Discontinuities 247) m+ }# G7 x8 M4 H0 q0 {
4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
* }" s$ h( j; [4.5.1 Voltage and Current as Functions of Position 261! S' l1 U" Q3 J% n9 @
4.5.2 Power Flow 2690 V9 R( v/ n+ c  N# c2 {* b6 h
4.5.3 Inclusion of Losses 270$ j- d* F8 t: U
4.5.4 Effect of Losses on Signal Integrity 273' _% Z* C- p! P: s, \& k
4.6 Lumped-Circuit Approximate Models 283+ B/ Y+ v0 h$ a4 V5 H
Problems 287$ N9 [# Z2 `  q. T
References 297
- E" x, E$ U- Z9 b$ I8 J" g5 Nonideal Behavior of Components 299
, ]! y3 k( f3 P' z0 T1 L0 F5.1 Wires 300! d# N8 p% C# [# u3 C' U3 W
5.1.1 Resistance and Internal Inductance of Wires 3043 S/ E8 N0 R6 U6 ~) f
5.1.2 External Inductance and Capacitance of Parallel Wires 308
& F' o# v/ u3 r  y# Y5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
2 l% ]7 z/ u" h3 p5.2 Printed Circuit Board (PCB) Lands 312' y( Q% I6 q1 {- A1 w% v& k
5.3 Effect of Component Leads 315
" e7 p/ x0 T' I; c5.4 Resistors 317
* P* _8 Y& \4 o' z$ N0 d% I5.5 Capacitors 325& |$ _, F, [; M1 M
5.6 Inductors 336) z. F2 U" d8 y$ L
5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
" r7 |; w) K, X5.8 Ferrite Beads 343% f; l% K. H) y* o* s  |
5.9 Common-Mode Chokes 346
  c/ N% e& v" Z7 G6 D' S7 d5.10 Electromechanical Devices 352
3 ?$ S* ^; S% c% l2 A" I5.10.1 DC Motors 3522 e- X9 Q' \3 |6 y( N+ @
5.10.2 Stepper Motors 3553 c# g% b  a& X
5.10.3 AC Motors 355
+ w$ f& \; I- N7 X5.10.4 Solenoids 356! G8 m! w* ?+ H6 z( L
5.11 Digital Circuit Devices 357
# U9 c1 L8 R: _. z1 r' z5.12 Effect of Component Variability 358
1 A9 ~0 l+ N$ f1 {5.13 Mechanical Switches 359
6 n! n$ I* Q" V: i( ?6 ~* d5.13.1 Arcing at Switch Contacts 360
2 P: L9 r- Z( n/ J) ?4 KCONTENTS ix$ l- x' a5 i% \
5.13.2 The Showering Arc 363* y2 r, f) X6 X5 Y5 j7 D7 ?
5.13.3 Arc Suppression 364% ^4 |9 U4 [' ~, K4 Q" A% P# ]
Problems 369
/ ?% ~! N% h  \( t8 z. q( XReferences 3751 Y. q0 s( |) M) _, d
6 Conducted Emissions and Susceptibility 377. C6 s- ~; g0 l! W: J7 w
6.1 Measurement of Conducted Emissions 378
, _, k0 M4 G$ Z4 ]+ s# T- w6.1.1 The Line Impedance Stabilization Network (LISN) 379
. e! C' V; R' x6 ?" b6.1.2 Common- and Differential-Mode Currents Again 381
! Q  C/ @5 V& b- P, _/ C6.2 Power Supply Filters 385
. W2 @, x9 q- s8 d* d  V& ^6.2.1 Basic Properties of Filters 385* X0 S+ n6 m7 {, [) }
6.2.2 A Generic Power Supply Filter Topology 388
* i- B5 Q9 b/ y! }0 t" [8 I6.2.3 Effect of Filter Elements on Common- and' Q7 O7 E" \9 W
Differential-Mode Currents 390
& j" [% S) s+ v# W" X6.2.4 Separation of Conducted Emissions into Commonand
4 S  A, v4 s5 x7 P* i( ?$ B( dDifferential-Mode Components for5 q! t. r1 o3 H7 u8 z
Diagnostic Purposes 396
& I- E) V: o- [( {# U6.3 Power Supplies 401
4 T7 Y8 d) u: f1 ?3 z6.3.1 Linear Power Supplies 405
, K2 J4 ]2 @: P6.3.2 Switched-Mode Power Supplies (SMPS) 406+ e# T, J2 j  {* t
6.3.3 Effect of Power Supply Components on Conducted
  p7 S& N. T- H: l# P2 jEmissions 409
! n# W7 ?) H! ?& |4 v' r6.4 Power Supply and Filter Placement 414
4 W: d7 y, p6 j6 G2 D. n4 t6.5 Conducted Susceptibility 4161 N6 B" x' X' M: |) F
Problems 416
( H9 B* }, p; ]6 S2 Y  cReferences 419
9 o/ r2 ^+ b# |1 P, H7 R5 S. D2 ~. v7 Antennas 421( q/ `( x; H2 n9 _/ J6 w1 Z2 G
7.1 Elemental Dipole Antennas 421
, E) L' u  g7 c/ E: Z7.1.1 The Electric (Hertzian) Dipole 422
) j  V5 H0 b. }4 o# N+ e7.1.2 The Magnetic Dipole (Loop) 426
  g6 z' x. u+ k2 w7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429  r6 P. v2 A* j$ x
7.3 Antenna Arrays 440
$ q, o* K6 i0 [* A; _7.4 Characterization of Antennas 448' Y: ^6 t' k3 l
7.4.1 Directivity and Gain 448; I! {% k; z: O9 r9 D% K
7.4.2 Effective Aperture 454
/ P' C4 O5 d) h3 U  q7.4.3 Antenna Factor 4564 y6 T9 P" J+ K0 A
7.4.4 Effects of Balancing and Baluns 460( P. h% O( P' D6 U
7.4.5 Impedance Matching and the Use of pads 463: W6 I- L7 R( }8 s& m
7.5 The Friis Transmission Equation 466. F% k6 S8 W# `9 Y
7.6 Effects of Reflections 470, Z; B- `2 w" p; e2 J" X
7.6.1 The Method of Images 470
) s7 g) a0 c( ^, i" nx CONTENTS# t: S# U) c* X1 D0 C% y: ^
7.6.2 Normal Incidence of Uniform Plane Waves on Plane,
* d; C% s( _8 w% r9 L' x; cMaterial Boundaries 470* l. u1 ~7 E) b! D# L/ w0 M
7.6.3 Multipath Effects 479
# f( p  j3 Q% Y1 M5 k  d' Z% |7.7 Broadband Measurment Antennas 486
0 s3 N& W7 I- X+ g- `7.7.1 The Biconical Antenna 487" Q' D, A% s2 \( E, y6 K" x
7.7.2 The Log-Periodic Antenna 490* _  @* M. o' S$ [; B0 @
Problems 494
/ w! }8 I; Z; A& bReferences 501" l  x4 m2 `; T2 W- ^8 H  O( D
8 Radiated Emissions and Susceptibility 503+ k- M4 t# S0 |: y3 {! L( C/ \( ]
8.1 Simple Emission Models for Wires and PCB Lands 5043 [6 [7 M* E3 [, @- }( n
8.1.1 Differential-Mode versus Common-Mode Currents 5045 ^$ _6 ~; b. U* n" w
8.1.2 Differential-Mode Current Emission Model 509
% o( v1 g. Z( K% G  i3 i3 V2 a8.1.3 Common-Mode Current Emission Model 514
% ]9 o6 Y9 O. I) `! @5 ~; e% W8.1.4 Current Probes 518
, Y8 ~" X- j; C8.1.5 Experimental Results 523
  F7 v& D7 r! R4 e" ^8.2 Simple Susceptibility Models for Wires and PCB Lands 533, f7 u8 E9 b6 k) G
8.2.1 Experimental Results 544
! U; S: d6 V4 w2 V- {5 m% y' O# A8.2.2 Shielded Cables and SuRFace Transfer Impedance 546; D& {0 F( m8 }$ T* ]- X0 x
Problems 5505 t2 C* J7 }3 |$ ~4 w
References 556
# a$ {9 T. ]9 N* P& q& `$ N1 p, F9 Crosstalk 559
* g+ v8 H) H' ^  J0 O9.1 Three-Conductor Transmission Lines and Crosstalk 560* w+ s" ]7 |% B: U7 J2 x1 N' H
9.2 The Transmission-Line Equations for Lossless Lines 564
" s( o+ y" [, K2 r3 |, Y8 t9.3 The Per-Unit-Length Parameters 567! [# L4 o2 I- h& G
9.3.1 Homogeneous versus Inhomogeneous Media 568
* M! Y  e) Q+ o+ }9 @. h0 N9.3.2 Wide-Separation Approximations for Wires 570
5 j8 H4 I; G5 h6 |6 W9.3.3 Numerical Methods for Other Structures 5804 f; h- J3 o; o! @  w7 e# I
9.3.3.1 Wires with Dielectric Insulations' e; M) }% U9 o/ y) n
(Ribbon Cables) 586
9 U. U1 V  `: Y' s4 V9.3.3.2 Rectangular Cross-Section Conductors
1 [$ ~% v. |9 f* B& T& I" {' J(PCB Lands) 590
0 _/ }& u- s! A7 q2 M9.4 The Inductive–Capacitive Coupling Approximate Model 595/ ?6 }# a  O4 N6 h8 w8 a
9.4.1 Frequency-Domain Inductive-Capacitive Coupling" x4 T5 t2 u# K8 R) ~) R
Model 599
4 n+ `: z2 V  w% f8 z9.4.1.1 Inclusion of Losses: Common-Impedance! J* D* D' j9 c/ T. q- u, J/ V" j
Coupling 601
- H6 a7 t8 h1 ?9.4.1.2 Experimental Results 6041 H4 f5 ?' J7 }: V/ G4 n
9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612! u  I: |) n4 |+ F% M% U4 r; F
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616/ k6 e) H6 X3 v& x6 h
9.4.2.2 Experimental Results 6177 A0 }2 y9 O& L  G% ]3 y% G
CONTENTS xi
0 Q/ ^9 `8 H% f. V" L% o9.5 Lumped-Circuit Approximate Models 6244 X- O6 D% s" p6 H! N1 E
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624# v5 c! h+ i9 E/ t* x2 s3 n! o5 T
9.6.1 Computed versus Experimental Results for Wires 633
9 m' e' ~6 ~3 K, j: `9.6.2 Computed versus Experimental Results for PCBs 640
) G" f& S9 b9 O9.7 Shielded Wires 6473 j8 d4 [8 i9 r! w
9.7.1 Per-Unit-Length Parameters 6483 k( O# W% O- [0 k+ v$ H
9.7.2 Inductive and Capacitive Coupling 651
5 S6 r) z5 X( F* G6 K+ D. r$ |9.7.3 Effect of Shield Grounding 658
7 ~1 f- l0 g: _# {3 k9.7.4 Effect of Pigtails 667! ]: D. d2 s% J& q
9.7.5 Effects of Multiple Shields 669; x0 ?* N- e) r1 o+ l# }
9.7.6 MTL Model Predictions 6758 w8 J$ m- W1 _' ?& b8 c+ \- [3 ?- z
9.8 Twisted Wires 677
& f0 [: }' ?1 L2 H- u; i9.8.1 Per-Unit-Length Parameters 681- O5 W; {' A& b/ Z. h
9.8.2 Inductive and Capacitive Coupling 685( }+ z" @# [- O. K# B2 L
9.8.3 Effects of Twist 689
: e- l$ a' o+ ^# ~+ }9.8.4 Effects of Balancing 698! j6 R( @6 G7 x
Problems 701
) _( W& Q& f: u" g# cReferences 710
& U9 W* ~: z, |10 Shielding 713
1 e& w9 [  x1 u5 F8 C8 p* g0 u! y10.1 Shielding Effectiveness 718: K) U& A4 @3 }7 U& r: X
10.2 Shielding Effectiveness: Far-Field Sources 721
2 b& f# K9 n+ S10.2.1 Exact Solution 7215 u' c4 y( I) Y
10.2.2 Approximate Solution 7255 h. v1 O: |0 F+ {% y
10.2.2.1 Reflection Loss 725) h7 v: u6 T5 L9 n1 _' r+ V8 V
10.2.2.2 Absorption Loss 7281 Y4 H" p0 b" t; O9 z/ l
10.2.2.3 Multiple-Reflection Loss 729. y% r7 E& d4 G( O
10.2.2.4 Total Loss 7315 d$ L5 J) S/ Y% [- Z
10.3 Shielding Effectiveness: Near-Field Sources 7351 {2 l& L1 P5 I4 J1 z! D! f" u
10.3.1 Near Field versus Far Field 7361 s% o: Q9 }5 G. A3 |* F7 ]
10.3.2 Electric Sources 740
; t6 _) x& r. W" L# |; s10.3.3 Magnetic Sources 7409 _% E- _+ o: }
10.4 Low-Frequency, Magnetic Field Shielding 742
% g7 v; X! i4 T* |2 h6 y; U/ E* w( r10.5 Effect of Apertures 7453 w0 h! G  C! y# ]+ _+ S
Problems 750
  V, Y/ i+ f' Q4 k& k4 G* Y3 A3 eReferences 751+ l7 B- K0 `) c5 B
11 System Design for EMC 753# F/ s3 t8 T/ x  X4 h( ~1 F
11.1 Changing the Way We Think about Electrical Phenomena 758+ [" F/ t6 q5 t
11.1.1 Nonideal Behavior of Components and the* J/ G) N8 V2 u! Z# Q. @6 M* w3 c
Hidden Schematic 758: d# }$ ]: `1 e1 s2 h7 n  o+ B1 G2 L
11.1.2 “Electrons Do Not Read Schematics” 7635 |7 w) i7 a$ V% h7 x  j
xii CONTENTS8 M, T. N' |5 S
11.1.3 What Do We Mean by the Term “Shielding”? 766
6 r; n7 Z  O; H# c6 K2 e11.2 What Do We Mean by the Term “Ground”? 768
7 q; G) {5 C4 y' p2 J11.2.1 Safety Ground 771* E! O2 M6 ~. r+ K$ E
11.2.2 Signal Ground 774
6 P% B/ M. r1 a# c* ^5 t. Y4 U11.2.3 Ground Bounce and Partial Inductance 775. z; H9 Q1 `' [/ n- ?# Q7 v
11.2.3.1 Partial Inductance of Wires 781
( B! e" ?( N4 ^- B9 a: g/ R6 G11.2.3.2 Partial Inductance of PCB Lands 786
6 x2 e# g' k, O+ A/ d11.2.4 Currents Return to Their Source on the Paths of Lowest
+ ]; w1 v5 D( Q5 v6 i0 S( p/ GImpedance 787) @5 C- q2 {$ d0 G* y/ z
11.2.5 Utilizing Mutual Inductance and Image Planes to Force% `$ Y& {6 _) y, A1 _
Currents to Return on a Desired Path 793$ p6 D( e' z" |& q5 c) s2 A
11.2.6 Single-Point Grounding, Multipoint Grounding, and
4 x+ e- I! u* t3 U+ v/ D+ ]4 WHybrid Grounding 796
8 x: J! [8 E% l" q4 D) G11.2.7 Ground Loops and Subsystem Decoupling 802
4 [% L( e" R- k2 ^; c; u1 o11.3 Printed Circuit Board (PCB) Design 8056 s6 g4 e: t) C  i/ ^* |: j9 Z
11.3.1 Component Selection 805& j4 I5 z/ z4 K) I$ j
11.3.2 Component Speed and Placement 806
  I* a" @$ }% H# a11.3.3 Cable I/O Placement and Filtering 808
  A; ^" f3 Y0 v- K1 m) \. _11.3.4 The Important Ground Grid 810
* K4 w- Y7 y! x" k11.3.5 Power Distribution and Decoupling Capacitors 812
1 V6 ~5 j) w1 A& I11.3.6 Reduction of Loop Areas 822
9 P6 ^9 L9 J' g1 y& v8 P11.3.7 Mixed-Signal PCB Partitioning 8237 J& w" ]3 T' [8 R
11.4 System Configuration and Design 827# t" E& n+ |. l4 H! D) c7 f# a8 w; m
11.4.1 System Enclosures 827! w" E5 p- Y% G- O7 k! l. s7 {
11.4.2 Power Line Filter Placement 828
( x$ _  L! n6 k7 A11.4.3 Interconnection and Number of Printed
/ X! M! C9 O9 Z$ Y1 sCircuit Boards 829
6 \& [% s4 W/ r6 b5 t. B11.4.4 Internal Cable Routing and Connector Placement 831
) g5 a4 T! j, t! O% r' O4 P11.4.5 PCB and Subsystem Placement 8328 h$ N3 J1 l, p$ p+ ^6 @
11.4.6 PCB and Subsystem Decoupling 8328 h+ C0 W! {+ k$ h
11.4.7 Motor Noise Suppression 832
3 @- Y$ V7 }6 c' l# ]11.4.8 Electrostatic Discharge (ESD) 834
; @3 H" C- h6 ?* i: |5 w) |$ `6 |0 k4 p11.5 Diagnostic Tools 847) m6 k$ z' _& [+ l. @" ?
11.5.1 The concept of Dominant Effect in the Diagnosis of5 A0 @- i$ e5 E. W5 S$ _' [* X, S: K
EMC Problems 850: Y# E! H7 s4 C, Z0 G
Problem 856* @5 t9 d+ o. B6 n, C) z
References 857
: i1 F# i! f* Z6 y. }1 b& rAppendix A The Phasor Solution Method 859
. x7 m( S: N; x; t" XA.1 Solving Differential Equations for Their Sinusoidal,5 Y+ X+ _9 s4 d. }
Steady-State Solution 859
$ n+ t( M& n4 e7 Q& {CONTENTS xiii" ?; H2 [( t; U9 Y3 ]! N/ {' }
A.2 Solving Electric Circuits for Their Sinusoidal,
$ Y. ~  _6 T0 ?3 t2 m9 bSteady-State Response 863
8 N+ P4 i7 @* \1 e# J  s" ]7 {- dProblems 867, [9 z6 Z+ [+ d1 _) H
References 869/ o$ t* B: i* G/ s
Appendix B The Electromagnetic Field Equations and Waves 871" v8 l; w7 E  J: D) T7 o
B.1 Vector Analysis 8720 r. T$ ?, E. q7 ?
B.2 Maxwell’s Equations 8810 t% H, `4 d  I# b4 E1 B% t6 A6 V8 K& |
B.2.1 Faraday’s Law 881/ y0 T5 o$ ]* R) @  D$ A( r1 ^
B.2.2 Ampere’s Law 892
! V- P( E, H: a1 BB.2.3 Gauss’ Laws 898
7 E! L$ A5 }$ n) TB.2.4 Conservation of Charge 900
; E6 R* Q  \( \5 f  L& W; iB.2.5 Constitutive Parameters of the Medium 900, M6 S9 a7 m- {3 j& w) I' V/ l% p! a
B.3 Boundary Conditions 9023 e2 w! E0 G- v0 l/ o
B.4 Sinusoidal Steady State 907
+ q* V. H$ O9 q2 k  a6 r, n6 l8 wB.5 Power Flow 909
% x* q: D) H2 D  FB.6 Uniform Plane Waves 909
& X* L" n6 I' P" u6 Z- UB.6.1 Lossless Media 912
4 [) L1 {' R- M. I3 e( O5 VB.6.2 Lossy Media 918: O1 S7 I. O/ {4 q' @, ~
B.6.3 Power Flow 922
6 q/ V1 R7 H. G2 g/ }B.6.4 Conductors versus Dielectrics 9234 z! e8 g! X2 e8 `
B.6.5 Skin Depth 925, a2 T2 W/ c$ z* n& l2 x
B.7 Static (DC) Electromagnetic Field Relations—6 d* |8 u4 e3 `8 W* a. a
a Special Case 927
: A2 u1 }$ g6 c5 T, _# RB.7.1 Maxwell’s Equations for Static (DC) Fields 927
# e- ~& W/ W6 |2 [B.7.1.1 Range of Applicability for2 H( L/ f8 b' z2 e' g# C0 e& s
Low-Frequency Fields 928/ S; d  u. u9 Z- I7 [1 p+ [
B.7.2 Two-Dimensional Fields and Laplace’s
  q. \0 F4 n0 a& JEquation 9287 h! j8 B. s" m
Problems 930
2 V: n2 ]! s. g  U% B: h$ V( JReferences 939' h: K$ ~- @( Z
Appendix C Computer Codes for Calculating the Per-Unit-Length0 A8 X, Y7 X& s. l2 Y, N% \. T
(PUL) Parameters and Crosstalk of Multiconductor
( @$ X3 T7 J+ k2 E$ a0 k4 CTransmission Lines 941+ Z7 s4 j% a( b2 L) H
C.1 WIDESEP.FOR for Computing the PUL( T5 I* K  X1 J; _
Parameter Matrices of Widely Spaced Wires 942& {4 s5 m; C( i: J: N! s3 t
C.2 RIBBON.FOR for Computing the PUL Parameter* W9 G' G* [- ^7 h. s; G0 S
Matrices of Ribbon Cables 947
5 a# ~8 w, {& b4 hC.3 PCB.FOR for Computing the PUL Parameter
9 t/ M2 D( q" a$ c* R6 IMatrices of Printed Circuit Boards 9491 s1 A2 h/ D, x4 B' I$ i* W/ b1 |
xiv CONTENTS
4 E" Y2 Z1 d/ G& z3 u" J$ g. RC.4 MSTRP.FOR for Computing the PUL Parameter) n, a6 e/ \3 _; L# q) c
Matrices of Coupled Microstrip Lines 951
6 Y, G) U0 G8 C4 NC.5 STRPLINE.FOR for Computing the PUL
; U" e' n% q5 F; d' l# d1 L& x( J3 P& r4 M# MParameter Matrices of Coupled Striplines 952
3 U" b4 x* K6 n+ ~/ S, Q  AC.6 SPICEMTL.FOR for Computing a SPICE
6 V+ g  R+ N7 P8 }" j) v6 w  M9 ^. T(PSPICE) Subcircuit Model of a Lossless,
8 s2 `2 ^0 s: y7 p: T$ VMulticonductor Transmission Line 954$ c1 F4 E4 `, F( U5 s
C.7 SPICELPI.FOR For Computing a SPICE (PSPICE)
3 w# H8 M8 ~$ C0 @0 K: f8 B1 uSubcircuit of a Lumped-Pi Model of a Lossless,$ j% o; L( ~8 C/ |8 T
Multiconductor Transmission Line 956% S7 h% ^- P" F, E1 L7 J# L7 s* x
Appendix D A SPICE (PSPICE) Tutorial 959
# X; y6 [! }# q3 ^2 pD.1 Creating the SPICE or PSPICE Program 9604 E/ W1 H+ \' v. ]
D.2 Circuit Description 961
2 }2 y  Q/ z* [. k! I/ t* ]$ LD.3 Execution Statements 9669 q# p- ~: q3 K, i6 S2 \
D.4 Output Statements 968
7 [' w; v& t0 @# p$ {$ iD.5 Examples 970  V3 P8 F. Q/ E0 c# Z, z
References 974: A1 _0 u  e- Q
Index 975
$ Y: `% |2 u* W  Q  L$ y/ O2 D* ]0 v  E' d7 {7 E2 Q" T. v( {

Wiley.Interscience.Introduction.to.Electromagnetic.Compatibility.Jan.2006-Clayto.rar

7.65 MB, 阅读权限: 40, 下载次数: 1, 下载积分: 威望 -5

该用户从未签到

2#
 楼主| 发表于 2018-12-26 15:55 | 只看该作者
3.Handbook of Electromagnetic Compatibility
7 t+ ]) x- A" d2 s: T, |& n9 d电磁兼容性手册
4 U; }* x$ v! A- L  n4 ^9 v1995年出版- Q7 ?& `  d0 Y3 ^
作者Reinaldo Perez
( E7 H9 f. {7 R, o5 _" @# O* g: u【无目录】

Handbook of Electromagnetic Compatibility, 1995.part1.rar

10.8 MB, 下载次数: 1, 下载积分: 威望 -5

Handbook of Electromagnetic Compatibility, 1995.part2.rar

10.77 MB, 下载次数: 1, 下载积分: 威望 -5

该用户从未签到

3#
 楼主| 发表于 2018-12-26 16:10 | 只看该作者
4.EMC for Product Designers5 A5 a: C; Y/ I8 Z/ V
Tim Williams2 N7 u6 l) {3 I1 L, @. i
6 V3 N" Q9 ?& O" n1 S+ V( P8 }

( ]! K' d4 \6 A) x

content.png (42.19 KB, 下载次数: 2)

content.png

EMC for Product Designers.rar

8.65 MB, 下载次数: 2, 下载积分: 威望 -5

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-26 20:45 , Processed in 0.156250 second(s), 25 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表