找回密码
 注册
关于网站域名变更的通知
查看: 300|回复: 1
打印 上一主题 下一主题

Matrix Analysis

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2017-1-10 14:12 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Table of Contents0 o2 T0 ^$ l3 _$ L( V
1 Preface+ _5 P' ^8 o3 f  v9 C
1.1 Preface to Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 O9 o9 K8 b2 U1 h' W/ t' U
2 Matrix Methods for Electrical Systems
( O# L& u( E/ w' n 2.1 Nerve Fibers and the Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5$ m4 [( y; h% h& p& Q
2.2 CAAM 335 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
+ U* p7 u' g  a! e 3 Matrix Methods for Mechanical Systems+ ~1 a% R$ x& A4 N
3.1 A Uniaxial Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17/ V' w( f1 D, |1 F  B+ U8 ^
3.2 A Small Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221 S5 ?$ R' n% I+ a5 h" Q
3.3 The General Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
. e# z1 [- R1 B) v+ }: J 3.4 CAAM 335 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28- w2 J2 e, [( z: p
4 The Fundamental Subspaces) b7 E4 t1 z+ S; D! c. ~% p0 H# p
4.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31. w1 g& ~( d! J6 h# @$ _
4.2 Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327 V# r; ]! M2 U8 Q- d; N$ h
4.3 The Null and Column Spaces: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34; s. A; C5 S6 F% _
4.4 Left Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1 |4 i& P& ?7 e9 a 4.5 Row Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
: O: q& ?" _* Q* \ 4.6 Exercises: Columns and Null Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
- ?! P% g" Z! c1 }6 @ 4.7 Appendices/Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40, l) o% i$ d5 ^. l2 @% \
5 Least Squares
. [1 E( o! ]8 l8 d 5.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
' `/ o) I* I" }2 {( [4 ]) H 6 Matrix Methods for Dynamical Systems
" r( k/ b3 S6 f; O# H; l9 X1 c3 n 6.1 Nerve Fibers and the Dynamic Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .516 \& ?$ o$ M8 h; s- C7 a: X5 {, Q
6.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56) v1 G! J% u5 @* A- K  p) G
6.3 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58% C0 P5 Q' g# B3 u, z
6.4 The Backward-Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59" I* `+ v6 C% K7 A8 h# `- r
6.5 Exercises: Matrix Methods for Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .602 k0 K; g- M) @! Z
6.6 Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
( W3 `' k# [: a; @; r0 p. }1 h( p 7 Complex Analysis 1- T# m2 L% n& s# R( H
7.1 Complex Numbers, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
0 |' b5 z4 N9 O" z. O5 }: b 7.2 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75) F3 S$ s. Q( L9 m5 g. g+ f+ ?9 Z
7.3 Complex Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774 W, y' p* ^* \4 B  S) W- G) ^5 p* n/ o
7.4 Exercises: Complex Numbers, Vectors, and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
* [; i/ ]. ]# O! d+ s6 M/ B  M0 E Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
" o0 s$ L4 X8 w& _! ?/ [, o 8 Complex Analysis 2! b: y% t0 m# L4 e2 O6 ~; ]% B
8.1 Cauchy's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  S. J5 R% d. b( d
8.2 Cauchy's Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880 Z% N) j1 n: j; Q1 d( P
8.3 The Inverse Laplace Transform: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92' M& M- M0 X0 I3 H
8.4 Exercises: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93" L, r3 a" G/ p: [/ R% i
9 The Eigenvalue Problem( m8 _6 y9 ~. M& h" I, p7 O* k
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 958 E% {( A+ s# Q. f  Y
9.2 The Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96' U( b. r6 L3 @' ?, U# `! M0 B
9.3 The Partial Fraction Expansion of the Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97$ l: J0 _% J2 r$ B, _( x
9.4 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100" ?# V  p* N2 `# s* R, C2 b- o
iv; U( K$ B  u9 L+ c3 |7 M
9.5 The Eigenvalue Problem: Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101! [8 q6 j- g$ R/ v1 N1 N
9.6 The Eigenvalue Problem: Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 R) O: N* s3 y, `
10 The Symmetric Eigenvalue Problem9 X, U1 k# g# h3 q" `
10.1 The Spectral Representation of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
0 N9 k( ?* k- t/ A 10.2 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
$ s: s' B) g! g0 [+ p; n 10.3 The Diagonalization of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108( N: `* L8 F2 V5 J8 @% C
11 The Matrix Exponential
& s( ~( F: a7 F) T 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9 e+ u, _) w5 l 11.2 The Matrix Exponential as a Limit of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
" E5 b6 z1 I) e% k9 K7 v 11.3 The Matrix Exponential as a Sum of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114* N4 G. F2 R# P8 ^% Y
11.4 The Matrix Exponential via the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1165 I- n  b, C, |3 x. G- g, f
11.5 The Matrix Exponential via Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8 ?8 W" {3 y/ L. F9 |7 ]& x0 S* t 11.6 The Mass-Spring-Damper System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121, X' A' E+ }" P  g( d
12 Singular Value Decomposition
5 K5 P' ^9 _8 n3 j+ p9 A8 `; s 12.1 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
- \  Z& X% l) p; B- v! C' `1 I Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1303 I& T# w2 _4 q5 P5 i
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6 `5 r8 q! v3 ^2 F Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
" w2 R9 ^; w  R8 c7 k3 i# C8 a Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139' ^# p5 y% V1 h, ~. ]
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 04:28 , Processed in 0.156250 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表