|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 Introduction' J% R0 G. z7 J
1.1 Photonics: the countless possibilities of light propagation
0 v5 u% Q2 M# ~1.2 Modelling photonics
4 e" Q0 G2 A; T2 [ m" ?( ~( J- k {* d2 Full-vectorial Beam Propagation Method
9 h: |3 C6 e7 O2 d$ a; @ ]( [6 x2 y8 z2.1 Introduction2 w; z4 J* n4 E0 \
2.2 Overview of the beam propagation methods
4 d6 Q- P3 @& Q2.3 Maxwell’s Equations* s; C. {! F* [! P, s6 q
2.4 Magnetic field formulation of the wave equation
* |6 T2 v5 d) G3 _' {- U) C% Y. j: z2.5 Electric field formulation of the wave equation. H/ ?% m% t( `+ E; c' f- Z1 ?* P& \1 c
2.6 PeRFectly-Matched Layer2 v" k3 G0 k3 Z1 \5 {( m
2.7 Finite Element Analysis* B6 ^3 E9 d4 |2 b
2.8 Derivation of BPM Equations: x3 t+ I% H; h* V8 J' n& M
2.9 Imaginary-Distance BPM: Mode Solver
6 [$ _+ {' v# I" {4 T2 O3 Assessment of Full-Vectorial Beam Propagation Method& y$ ?6 t, @$ d! E) K
3.1 Introduction( v' n) _7 c' q( j
3.2 Analysis of Rectangular waveguide. z# L3 B1 l7 A5 ]0 j& K% D
3.3 Photonic Crystal Fibre3 S- f; `0 x9 u+ t U& c6 P
3.4 Liquid Crystal Based Photonic Crystal Fibre7 r: K/ {0 J; \, E2 j/ q0 J
3.5 Electro-optical Modulators1 M; [- D( J" Q+ [) w ]
3.6 Switches: k `" r( C) e2 R( y8 d$ W
4 Bidirectional Beam Propagation Method' z& A N7 Q. N, H4 \8 @0 z1 l
4.1 Introduction
) X! P0 O$ _) M: h! U4.2 Optical Waveguide Discontinuity Problem
$ c+ Z) P- V. D4 E8 {1 c! b4.3 Finite element analysis of discontinuity problems
8 p, P1 A0 l5 H/ p4.4 Derivation of Finite Element Matrices
5 \" G1 Y; |; | P4 Q5 a, e* ]. |4.5 Application of Taylor’s Series Expansion
+ u9 v) Q; o2 `: |* x4.6 Computation of Reflected, Transmitted and Radiation Waves
2 a' O' D; d& J; ~4 @* a/ O4 c4.7 Optical fiber-facet problem
( i% x, |: Q8 A, L; r4.8 Finite element analysis of optical fiber facets
5 i0 u3 s; @% W! }/ h4.9 Iterative analysis of multiple-discontinuities1 u1 v- n) H; B1 i, ]. Y" p
4.10 Numerical assessment
Y# A1 p N+ T/ n9 E5 Complex-Envelope Alternating-Direction-Implicit Finite Difference Time Domain Method with Assessment% ?4 c7 Q! j/ I0 e ?
5.1 Introduction
& D Y% Q; x' b/ @# G( C% n9 z5.2 Maxwell's equations$ R' k _4 T$ p f& P2 s5 f
5.3 Brief history of Finite Difference Time Domain (FDTD) Method
7 d8 l) m4 H, h) ?. A; f5 P) ^5.4 Finite Difference Time Domain (FDTD) Method7 N' J5 c( a2 g
5.5 -Direction-Implicit FDTD (ADI-FDTD): Beyond the Courant Limit' L$ _8 h/ ^0 a, K7 N
5.6 Complex-Envelope ADI-FDTD (CE-ADI-! K3 g5 A' Z% G5 b% \) h4 ]# O
5.7 Perfectly Matched Layer (PML) Boundary Conditions
1 v, S+ y- @( X8 G, h1 d( K, h2 K1 _5.8 Uniaxal Perfectly Matched Layer (UPML) Absorbing Boundary Condition
$ _& s+ D) q3 s# l$ k0 r5.9 PML Parameters
& z) Q9 n, {3 a: Y V6 s5.10 PML Boundary Conditions for CE-ADI-FDTD
, S' _8 K# C( L0 _& ]5.11 PhC Resonant Cavities
4 X( O/ {" p1 a/ N5.12 5x5 Rectangular Lattice PhC Cavity; |, e |( ~) a9 ]5 I+ D/ d" K
5.13 Triangular Lattice PhC Cavity
8 i0 E& K" j5 v5.14 Wavelength Division Multiplexing
8 m6 y: u% Z m6 a- W, U5.15 Conclusions& E* y2 W$ _% H7 ] j; _! C: u
6. Finite Volume time Domain (FVTD) Method
$ z' ^4 E b5 N' a4 D! j6.1 Introduction
* R. }$ ^$ \. o( [; w6.2 Numerical analysis4 o2 @; {" b3 d) \ F7 @% ?
6.3 UPWIND Scheme for the Calculation! Q' M/ W( Y$ e5 }) ] v5 R
6.4 NON-DIFFUSIVE Scheme for the Flux Calculation+ E { `( ~4 \
6.5 2D Formulation of the FVTD Method1 r6 q8 o0 l3 w' L
6.6 Boundary Conditions: V5 x4 P4 L' M; N9 j# J4 P& A/ |
6.7 Nonlinear Optics* ^1 q/ N( j- w' @0 O0 Y# {0 c
6.8 Nonlinear Optical Interactions
( n) I. p4 r d2 L) Q6.9 Extension of the FDTD Method to Nonlinear Problems
: ]/ Q* A+ V! p$ c4 R" u6.10 Extension of the FVTD Method to Nonlinear Problems
: h9 J# R: l/ i O( [, L5 \6.11 Conclusions
+ |, i5 W' M. E" D% J9 A3 q4 E7 Numerical Analysis of Linear and Nonlinear PhC Based Devices& I8 [! L) M; g h# N: s5 r
7.1 Introduction3 }" I& G$ G" S' a a" U* _4 H
7.2 FVTD Method Assessment: PhC Cavity6 w: {3 R, K* h' C
7.3 FVTD Method Assessment: PhC Waveguide" F: L/ ?& g, I: W; x
7.4 FVTD Method Assessment: PBG T-Branch
4 Z1 O6 l1 W( u% |3 q7.5 PhC Multimode Resonant Cavity
+ l' J* `5 t7 ]7.6 FDTD Analysis of Nonlinear Devices/ j- P! b3 B& v4 ~
7.7 FVTD Analysis of Nonlinear Photonic Crystal Wires
% l( c" w0 q% C+ Y2 I& b7.8 Conclusions$ g, |5 b3 { h+ N
8 Multiresolution Time Domain
+ Y( {& b$ J3 b5 a4 |5 ^2 a8.1 Introduction
/ w8 b9 G3 e: s0 P2 `8.2 MRTD basics
& I0 N9 c: w" s5 }- M5 G7 A+ V& _3 c8.3 MRTD update scheme
7 _: ?+ m, o3 |4 A8.4 Scaling-MRTD4 l% ]3 v, @' @, d: ^' B, t
8.5 Conclusions
7 i% I+ ^2 r/ ~. X# ~" w9 MRTD Analysis of PhC-Devices
4 ]9 {" k# l% g0 R" E; t( n, X) k4 q9.1 Introduction
% P! I* h& g9 X9.2 UPML-MRTD: test and code validation
" t$ v7 `; {1 N" ?: \9.3 MRTD vs FDTD for the analysis of linear photonic crystals- c3 G4 U) P: h4 Z5 w( }! R$ W
9.4 Conclusions
7 w% s* i3 T) y10 MRTD Analysis of SHG PhC-Devices) @9 w0 p: Y: p. { _: `
10.1 Introduction
: {3 p8 I6 B& t( i10.2 Second hARMonic generation in optics) _1 H$ D. h- t/ U8 c/ a0 s5 v* g
10.3 Extended S-MRTD for SHG analysis
' o- ?) D% k" M: y. L# L10.4 SHG in PhC-waveguide# C0 H8 X' |& ~) F* [) A$ z
10.5 Selective SHG in compound PhC-based structures
/ M4 R) k7 Y0 c6 e" ~) q10.6 New design for selective SHG: PhC-microcavities coupling4 a4 H7 ^9 Y( I
10.7 Conclusions
9 T+ @ z; o0 E9 A11 Dispersive Nonlinear MRTD for SHG Applications
( H: m. C, n2 ~11.1 Introduction) W( c; J- _2 @) |' C' d3 \. v& C
11.2 Dispersion analysis4 p o5 ?6 {/ r2 B
11.3 SHG-MRTD scheme for dispersive materials8 I" w8 W# y; E; w
11.4 Simulation results
% a* m" T& s# L+ g8 `7 {11.5 Conclusions |
|