找回密码
 注册
关于网站域名变更的通知
查看: 475|回复: 2
打印 上一主题 下一主题

Audio Signal Processing and Coding

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2016-11-12 14:46 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
语音信号处理及压缩编码算法介绍
) }6 t6 [7 A8 y& b" a- b$ |0 E0 c( w" |7 e3 g
1 INTRODUCTION 1: ]/ e8 h, F% F) A: v
1.1 Historical Perspective 1
0 r: B% [$ l: L( M7 X, I2 h1.2 A General Perceptual Audio Coding Architecture 40 E0 D* Q' N( N) q0 L. ?
1.3 Audio Coder Attributes 5( o8 C" x$ Z! n# b6 [
1.3.1 Audio Quality 6
# [- w2 \1 J! b- Z1.3.2 Bit Rates 69 [% l9 }& n/ g7 n
1.3.3 Complexity 6
' g- ]0 _( J3 a" d% V* d5 H7 L1.3.4 Codec Delay 7
' D/ }) j8 M; J/ ?# O6 M1.3.5 Error Robustness 7! \0 a) O! O: c6 G' h' G8 b
1.4 Types of Audio Coders – An Overview 7, C- d% s2 ^' N# B' E
1.5 Organization of the Book 8
' H* g  u/ ^) G4 |' y1.6 Notational Conventions 90 S1 f( I/ C! P8 N* R, t/ ]

2 m3 S2 y+ S/ S3 b, L2 SIGNAL PROCESSING ESSENTIALS 13
& m7 h7 W4 G5 f+ F4 R7 L2.1 Introduction 13* B. Y0 A% R! A  o& M, `" b
2.2 Spectra of Analog Signals 13
$ i, H- {8 `* l, }2.3 Review of Convolution and Filtering 16
4 F$ k6 S9 X+ ^5 n; c& [2 R2.4 Uniform Sampling 17
& G+ w9 e# u, h& }4 ]$ m8 p2.5 Discrete-Time Signal Processing 20
  R% a: r5 d$ x3 M2.5.1 Transforms for Discrete-Time Signals 20
% ?( @9 I+ M3 I3 V( p( U2.5.2 The Discrete and the Fast Fourier Transform 222 S1 `4 [) p# k$ s/ O* Q0 U
2.5.3 The Discrete Cosine Transform 23
) Y, L* g  b$ [  z. C4 ]2.5.4 The Short-Time Fourier Transform 238 w* z  T9 Z* J; C- L
2.6 Difference Equations and Digital Filters 25/ k& x! |  n4 t- _! [6 g
2.7 The Transfer and the Frequency Response Functions 27& m1 x3 a) x$ G4 w6 P0 E8 v
2.7.1 Poles, Zeros, and Frequency Response 294 ?$ \4 W8 m; v; l
2.7.2 Examples of Digital Filters for Audio Applications 30
8 k$ t% w  f  B( B  ^2.8 Review of Multirate Signal Processing 33. b7 b, Z, d* b" l% ?# z% E
2.8.1 Down-sampling by an Integer 337 Z0 [. x" e$ z9 Q2 B# \' d
2.8.2 Up-sampling by an Integer 35
: i, Q  g+ @; |9 V+ {/ Z2.8.3 Sampling Rate Changes by Noninteger Factors 36
( j! ^% H# j" f- v" h4 F2.8.4 Quadrature Mirror Filter Banks 36
3 ]$ r. U& k  Y8 y$ j2.9 Discrete-Time Random Signals 39
. k" R  O, ~2 {4 p: W  l! H2.9.1 Random Signals Processed by LTI Digital Filters 42
; L* B7 \& P% [' j2.9.2 Autocorrelation Estimation from Finite-Length Data 44, t: H8 ~) a  p0 T
2.10 Summary 44
. w0 }& |/ y$ g: q. T3 N
7 Q4 c' F8 C& P) {; M5 s: F8 i* o0 O3 QUANTIZATION AND ENTROPY CODING 51" F& V6 }4 ?# X. z) m3 x6 [
3.1 Introduction 51
, g0 [8 u9 {) ^3.1.1 The Quantization–Bit Allocation–Entropy Coding Module 52
: o" i  ^" ?: n* K9 ?  `8 d. m& F3.2 Density Functions and Quantization 53$ U7 M! y) N  K
3.3 Scalar Quantization 54  W$ d6 h6 w9 ^/ L/ J& z
3.3.1 Uniform Quantization 543 @+ u" m9 [1 o9 {; H; `
3.3.2 Nonuniform Quantization 57  o! b# w3 j/ y9 I1 B* U* x
3.3.3 Differential PCM 59# ?6 k9 O# W, _
3.4 Vector Quantization 62. _  [& E- `, o
3.4.1 Structured VQ 64& D( I; ^& Z% J" V3 G$ B  g" x. [
3.4.2 Split-VQ 67
" \: Q' d/ `$ I0 z3.4.3 Conjugate-Structure VQ 69
. h( \3 S2 W; B( g: x3.5 Bit-Allocation Algorithms 70; |" x0 V' J  J% U8 @& l' s% m' [
3.6 Entropy Coding 74
% O- P1 J1 t* N2 N  ^3.6.1 Huffman Coding 77
0 W5 Q3 F: u& p4 @: c3.6.2 Rice Coding 815 a- S+ D- j5 q! A2 _
3.6.3 Golomb Coding 82
! E4 A3 }4 U9 Y/ \2 j+ u3.6.4 Arithmetic Coding 83
* x* ]3 Q  B9 L1 ]1 X9 c4 m3.7 Summary 85
0 I5 J* e0 Z, f* ]2 C. n8 c4 W0 d- Y* a
4 LINEAR PREDICTION IN NARROWBAND AND WIDEBAND& s* s4 C4 E9 N* X- s
CODING 91
0 r4 B9 Q) @! }3 h9 m, Q$ w1 [4.1 Introduction 91
! r7 X: B' W% Z% {2 u* U4.2 LP-Based Source-System Modeling for Speech 92
. O  W7 ~5 V8 X4 ~4.3 Short-Term Linear Prediction 94
1 `8 O% ~: m. {4.3.1 Long-Term Prediction 959 s, j. i% J- k4 o- x
4.3.2 ADPCM Using Linear Prediction 96
$ L* e! {& o) [6 r% Z4.4 Open-Loop Analysis-Synthesis Linear Prediction 96) g" K+ C- M7 E8 g* _
4.5 Analysis-by-Synthesis Linear Prediction 97
! A* b# E+ w. a* r! s4.5.1 Code-Excited Linear Prediction Algorithms 1004 ~. b' j% [; K8 X0 B- Y
4.6 Linear Prediction in Wideband Coding 1020 ~: T# m1 L5 N7 \9 D$ U! [& N
4.6.1 Wideband Speech Coding 102
" _% f, K) f( T# s3 ^0 L! J$ D4.6.2 Wideband Audio Coding 104+ x0 r0 i, @( {
4.7 Summary 106" M9 k; q8 o0 M& z. Y& t' ]1 [. @! L% L
, ]" [' T6 L8 N. \+ v: F: v
5 PSYCHOACOUSTIC PRINCIPLES 113
" ]) V+ J  {& }  t1 A' ?5.1 Introduction 113
6 l- ?( H' ^* r/ Z) s" N4 j7 R; x5.2 Absolute Threshold of Hearing 114, L9 I' ?5 ]( K  M
5.3 Critical Bands 115% \9 }& g" O" o8 `% E& m
5.4 Simultaneous Masking, Masking Asymmetry, and the Spread of Masking 120- @$ q3 ~, v" b+ G
5.4.1 Noise-Masking-Tone 123
4 D# [  g. P/ `2 M% |8 N9 t5.4.2 Tone-Masking-Noise 124- e( P6 Q! j1 R" ]+ B2 @
5.4.3 Noise-Masking-Noise 124  }: e8 K7 I. ?5 g0 T* P
5.4.4 Asymmetry of Masking 124
6 N, d. n$ r9 `5.4.5 The Spread of Masking 125
4 }* w  A: }' Q! X5.5 Nonsimultaneous Masking 127
8 x* I4 a& i% T4 o$ v, p3 U5.6 Perceptual Entropy 128
1 \( |; A" z. T( d4 m- U5.7 Example Codec Perceptual Model: ISO/IEC 11172-3(MPEG - 1) Psychoacoustic Model 1 1300 f; Z- _/ J' I. ~3 v' d! A2 S# D
5.7.1 Step 1: Spectral Analysis and SPL Normalization 131/ J+ X' ]5 b. i+ E2 p
5.7.2 Step 2: Identification of Tonal and Noise Maskers 131  V$ K% J9 T  p7 b% R
5.7.3 Step 3: Decimation and Reorganization of Maskers 135
" E. T$ E& h6 A! ]3 p; x( x9 M5 |5.7.4 Step 4: Calculation of Individual Masking Thresholds 136( L0 z- d* o5 m2 j3 J- W
5.7.5 Step 5: Calculation of Global Masking Thresholds 138, ?0 L' n, U5 y# k/ l; K. ~; `
5.8 Perceptual Bit Allocation 1383 V8 P% S- v2 Q- D, i; E) y
5.9 Summary 140. m' U! D$ U5 P) ]2 t

0 x. b8 x! C2 Q; Y2 K, o# G# C6 TIME-FREQUENCY ANALYSIS: FILTER BANKS AND
" L' H+ Y6 R( n% s/ g' D7 `+ T) CTRANSFORMS 145/ Z# U' y2 e* ]5 U( s% z4 k% F
6.1 Introduction 145
3 `& f, x, |3 @! o/ z; }) @# T6.2 Analysis-Synthesis Framework for M-band Filter Banks 146
+ c/ K( f) F8 K. x6 Z- _4 y0 @, B6.3 Filter Banks for Audio Coding: Design Considerations 148
* V4 C& O+ }8 v5 v1 d6.3.1 The Role of Time-Frequency Resolution in Masking
' A8 q1 N1 o9 P& w3 k% a7 d" [7 w/ ?Power Estimation 1499 m5 |; [7 E2 n- g! Y9 m
6.3.2 The Role of Frequency Resolution in Perceptual Bit5 R& z) j7 b- D; y3 c! O
Allocation 149
4 i, p5 T- u# O( G( Z4 z6.3.3 The Role of Time Resolution in Perceptual Bit( M- ?: W! l1 I
Allocation 150
# i& l8 Y4 O: r% |3 d$ y! E2 q6.4 Quadrature Mirror and Conjugate Quadrature Filters 1554 q4 [* T4 [5 Q+ L, }
6.5 Tree-Structured QMF and CQF M-band Banks 156
& _* [# Y' U" N6.6 Cosine Modulated “Pseudo QMF” M-band Banks 160, S0 F* k7 B: Y7 Z) l5 P) |
6.7 Cosine Modulated PeRFect Reconstruction (PR) M-band Banks
) e6 Q9 W" V% K2 O7 z6 o9 aand the Modified Discrete Cosine Transform (MDCT) 163* H# M% l0 Z- R8 d% o
6.7.1 Forward and Inverse MDCT 165
& Z- i/ g' ?* X4 A2 w0 w8 V) ^3 t6.7.2 MDCT Window Design 165  q' G+ h' t8 j
6.7.3 Example MDCT Windows (Prototype FIR Filters) 1678 u& o  y4 u, B* k6 [5 [- B/ U
6.8 Discrete Fourier and Discrete Cosine Transform 1783 N& k2 T! |/ Q# u2 T9 C
6.9 Pre-echo Distortion 180
7 i7 Y0 ?& }  ]  ^8 b4 H+ r6.10 Pre-echo Control Strategies 182
& G: B" Y- r3 v/ o% d, P" ^6.10.1 Bit Reservoir 1821 S. Y# r# _6 J: H
6.10.2 Window Switching 1822 N; r5 u. m" v
6.10.3 Hybrid, Switched Filter Banks 184
* I% p% p  W" o% Y2 w6.10.4 Gain Modification 185$ h* t: l9 ]7 G4 n7 `8 V" b+ L
6.10.5 Temporal Noise Shaping 185$ G4 o( u- M7 d" A( L
6.11 Summary 186& z' |; t$ i" m0 j- v
0 u, V/ M( Z- [5 [( i5 n- B) ?
7 TRANSFORM CODERS 195
/ G# N/ X* S$ P$ u. a; P4 ?7.1 Introduction 195# V, P- I% ?: a& d
7.2 Optimum Coding in the Frequency Domain 196
* [9 ?, A% E7 c7 l# w$ X# k/ F  q7.3 Perceptual Transform Coder 197! A- T1 A! N- V* p' d& d
7.3.1 PXFM 1980 ^2 x, ]; N0 J9 W
7.3.2 SEPXFM 199
8 e, Y) m. f; ^& q1 w: t) D7.4 Brandenburg-Johnston Hybrid Coder 200
- h3 a+ z0 B9 d! h$ ?7.5 CNET Coders 201  W3 [6 N; F# W' y  R
7.5.1 CNET DFT Coder 201) z9 ~8 J2 {! y: P' e
7.5.2 CNET MDCT Coder 1 201; l4 Q7 A; ^" N- [' ^; F" v
7.5.3 CNET MDCT Coder 2 202% p( ^/ Q7 I/ J" v$ s' Q
7.6 Adaptive Spectral Entropy Coding 203
% a% j! _, W. n1 `1 \- C. D1 R7.7 Differential Perceptual Audio Coder 204
/ s1 N- {+ n$ w6 A  u/ K7.8 DFT Noise Substitution 205% u9 K8 h+ Y9 z" r. e
7.9 DCT with Vector Quantization 2068 W9 s7 N4 H7 V. T0 y4 O& h1 _( u
7.10 MDCT with Vector Quantization 207
& ?, N$ i& k- ^( d) c7.11 Summary 208
/ c+ U) v; O" g+ A" G5 W: _: D: z2 V/ g5 ?' S# v7 n( i0 c
8 SUBBAND CODERS 211
; A% H: c+ C) d, b7 O- T, ]8.1 Introduction 211! q: ]' _# c" H& I% e! U1 Z
8.1.1 Subband Algorithms 212  F8 D. H4 d) \- K- c# m; T
8.2 DWT and Discrete Wavelet Packet Transform (DWPT) 214
8 m9 h) O7 ?5 y# z; @8 h! e7 l' w8.3 Adapted WP Algorithms 218
7 _3 C! A2 Y! i, P8.3.1 DWPT Coder with Globally Adapted Daubechies
0 v8 ]6 M; |2 t# ?Analysis Wavelet 218
6 Y0 [# d2 {- @* {8.3.2 Scalable DWPT Coder with Adaptive Tree Structure 220
+ C, x1 l4 o4 y8.3.3 DWPT Coder with Globally Adapted General" V1 s  H$ N1 }
Analysis Wavelet 223
6 j# [$ H+ k" }: Q0 B8.3.4 DWPT Coder with Adaptive Tree Structure and9 J  a9 D" P# m# E* P% ]! {' d9 L1 U
Locally Adapted Analysis Wavelet 223
2 O+ G% i) v+ ]4 \! d" Z8.3.5 DWPT Coder with Perceptually Optimized Synthesis
; a! |/ F4 H! O: ^! EWavelets 224& k' }$ O$ t1 w( b2 |' b
8.4 Adapted Nonuniform Filter Banks 226! t" N0 c5 P8 {6 X6 P
8.4.1 Switched Nonuniform Filter Bank Cascade 226) z% d$ r' c3 s! g- l
8.4.2 Frequency-Varying Modulated Lapped Transforms 227
: @/ G; j9 |9 P! [. P8.5 Hybrid WP and Adapted WP/Sinusoidal Algorithms 2273 v7 G: O. F, n
8.5.1 Hybrid Sinusoidal/Classical DWPT Coder 228
0 J/ G+ {" T! ^! J0 L8.5.2 Hybrid Sinusoidal/M-band DWPT Coder 229
, h6 g0 _) b4 u8.5.3 Hybrid Sinusoidal/DWPT Coder with WP Tree6 ^$ `  l6 _5 Y1 x/ R8 P
Structure Adaptation (ARCO) 230
8 L' y' m. d+ A7 L* V9 Q5 T8.6 Subband Coding with Hybrid Filter Bank/CELP Algorithms 233) K! _" D' d( {2 W
8.6.1 Hybrid Subband/CELP Algorithm for Low-Delay* o8 F) T8 B' {6 {3 c8 U, f
Applications 234
1 r! {) H6 l0 K2 s8.6.2 Hybrid Subband/CELP Algorithm for
' X$ x: d4 c0 o+ A  Q0 O1 |Low-Complexity Applications 235) J! ?8 y/ x9 D$ g) T
8.7 Subband Coding with IIR Filter Banks 2374 p% \, }$ @3 y& |! G2 V2 u2 _
& F8 O4 k9 B. e- v! M8 A% H0 a( d
9 SINUSOIDAL CODERS 241$ N$ ]- R! S+ Z5 \; V
9.1 Introduction 241
+ C6 k$ w5 h, W) ?, g: i' F& n: Y6 U9.2 The Sinusoidal Model 242
4 ?0 @' M6 F) [5 I) B: c9.2.1 Sinusoidal Analysis and Parameter Tracking 242
& c! t9 P4 x% G, d9.2.2 Sinusoidal Synthesis and Parameter Interpolation 245& t* S) e; t- Q5 N- J) G( q, M; l
9.3 Analysis/Synthesis Audio Codec (ASAC) 247
- Q& R$ N- v6 A1 a# @9.3.1 ASAC Segmentation 248
  O, I) Z% k: C1 g6 @9.3.2 ASAC Sinusoidal Analysis-by-Synthesis 248
' _' X+ V* @) f* e2 Z) z6 j( x9.3.3 ASAC Bit Allocation, Quantization, Encoding, and
  @) J; E, W! Y  K2 gScalability 248
! J) M3 O7 D) T2 x8 n! H% h/ J9.4 HARMonic and Individual Lines Plus Noise Coder (HILN) 249' h. `1 d2 h+ q4 l8 z# t: Q4 _9 z2 r: I
9.4.1 HILN Sinusoidal Analysis-by-Synthesis 250
; y# H; }% i; t8 P- n9.4.2 HILN Bit Allocation, Quantization, Encoding, and9 }# d% S2 e# O# V! K
Decoding 251
) t9 j" g. K+ `6 _3 N9.5 FM Synthesis 251
, I2 s0 l# b! }) W9.5.1 Principles of FM Synthesis 252
4 c8 y, Q; t5 U# B( C2 f9.5.2 Perceptual Audio Coding Using an FM Synthesis' Q9 X0 e. d. x. M+ E1 J3 W
Model 252. `/ o- y! [8 c' h
9.6 The Sines + Transients + Noise (STN) Model 2547 d$ e' ~3 E/ ]1 d+ W
9.7 Hybrid Sinusoidal Coders 255# f: u' C0 e, d) j4 Z( S$ ^$ A: y
9.7.1 Hybrid Sinusoidal-MDCT Algorithm 2565 w5 ?8 ^! G" z( G2 _4 x) v
9.7.2 Hybrid Sinusoidal-Vocoder Algorithm 257, u2 U: A* ]3 Z3 ^! B' p
9.8 Summary 258& R& J* I% J1 @6 r/ N

; L9 a3 u6 |8 i; y  `( I* O! n10 AUDIO CODING STANDARDS AND ALGORITHMS 2635 [5 ^- s( a8 P0 B/ ]$ A
10.1 Introduction 263
( f% \7 W( n/ D: h+ S: y! F10.2 MIDI Versus Digital Audio 264, M2 I+ d6 Q# k+ A
10.2.1 MIDI Synthesizer 264
( O! H9 o8 L5 F9 }2 p9 R( s. g" ]10.2.2 General MIDI (GM) 266
( ?$ ^. u. R; v' x# p2 G7 @, z10.2.3 MIDI Applications 266
7 d) U+ L8 ~: ]  g' D5 J5 y2 K10.3 Multichannel Surround Sound 267
* N/ f# C: v! d10.3.1 The Evolution of Surround Sound 2672 x, M% L5 I0 s6 d9 c
10.3.2 The Mono, the Stereo, and the Surround Sound( [% R% Y6 F( p1 l' y
Formats 2683 J3 e; h4 a5 ?$ `
10.3.3 The ITU-R BS.775 5.1-Channel Configuration 268
- M. p/ L/ V* R( X. G* l% s' t10.4 MPEG Audio Standards 270' P( t' b! v! B% r
10.4.1 MPEG-1 Audio (ISO/IEC 11172-3) 275* [/ x# Z. I- P5 B
10.4.2 MPEG-2 BC/LSF (ISO/IEC-13818-3) 2793 G9 i1 ?+ z5 _  Z8 P# I5 O" _
10.4.3 MPEG-2 NBC/AAC (ISO/IEC-13818-7) 283
3 ?' X, o0 R9 K10.4.4 MPEG-4 Audio (ISO/IEC 14496-3) 289
* N( L$ Q. x5 v; H+ \9 B8 u10.4.5 MPEG-7 Audio (ISO/IEC 15938-4) 309
) Y0 o6 C0 Y6 G: E10.4.6 MPEG-21 Framework (ISO/IEC-21000) 317/ y+ L2 k; A' g; M) b" n
10.4.7 MPEG Surround and Spatial Audio Coding 319
6 W# {. U( K% m1 J( B, L& U10.5 Adaptive Transform Acoustic Coding (ATRAC) 319
6 K/ v: X% Y4 q. Q10.6 Lucent Technologies PAC, EPAC, and MPAC 321& Z- F( N, T: o; c: c
10.6.1 Perceptual Audio Coder (PAC) 321% O% F7 N% u: `! H5 ]! u
10.6.2 Enhanced PAC (EPAC) 323, m; n; o. Q8 L- h; r. L. \8 k
10.6.3 Multichannel PAC (MPAC) 323
  V8 J" w( Y4 Y( h* I10.7 Dolby Audio Coding Standards 325
4 }7 g1 x- Y4 f* E10.7.1 Dolby AC-2, AC-2A 3252 j# L0 \5 I+ B6 @
10.7.2 Dolby AC-3/Dolby Digital/Dolby SR · D 327
& i) W  L+ F- @6 N5 T2 @+ R10.8 Audio Processing Technology APT-x100 335
! X, ^( D+ R; T2 n7 m10.9 DTS – Coherent Acoustics 3386 ~6 v8 p" `* D* |, f9 u! \
10.9.1 Framing and Subband Analysis 3384 n, x* ^- L: V, L( e; y: a" M
10.9.2 Psychoacoustic Analysis 339
: J3 R- h2 `" Z: n% Q- q% M10.9.3 ADPCM – Differential Subband Coding 339
: i9 W# b% W- A' q10.9.4 Bit Allocation, Quantization, and Multiplexing 3412 g# S8 G0 j) q( F" R
10.9.5 DTS-CA Versus Dolby Digital 342  j2 T; r& k" p9 h4 n" z$ R

2 V# r0 A! h, L+ U  ?11 LOSSLESS AUDIO CODING AND DIGITAL WATERMARKING 343
! e$ p- f% U* _1 Q, F11.1 Introduction 3430 R9 X# C5 n4 x  L) V
11.2 Lossless Audio Coding (L2AC) 344: {$ p  L. r7 w9 U8 ^
11.2.1 L2AC Principles 345* q/ h- _$ T0 h. B, Y
11.2.2 L2AC Algorithms 3468 j+ z; j; r- `* C- S
11.3 DVD-Audio 356" [; \8 h3 p7 |  ~) j6 I) W# l
11.3.1 Meridian Lossless Packing (MLP) 358
% a* R% Q2 ]9 j. o# q5 S11.4 Super-Audio CD (SACD) 358
7 Z! B# _* S+ g7 p5 p& m. ?4 `1 n: K11.4.1 SACD Storage Format 362( J7 j1 Y* W; }' @# J
11.4.2 Sigma-Delta Modulators (SDM) 3625 e) }$ Q* U1 E4 b2 p: r6 q
11.4.3 Direct Stream Digital (DSD) Encoding 3648 z3 n4 h/ g, P8 b
11.5 Digital Audio Watermarking 368
7 ?0 H* j7 M* u; Y11.5.1 Background 370
" T& {! d5 i& y' D8 ]2 l% o3 F11.5.2 A Generic Architecture for DAW 374
7 q  z! M" r* P3 c11.5.3 DAW Schemes – Attributes 3772 V+ e* V) G0 [1 [7 D7 ]
11.6 Summary of Commercial Applications 378
9 S( e& F+ B# e/ m
% t6 S4 Q! \1 A3 R8 O- k3 i' P12 QUALITY MEASURES FOR PERCEPTUAL AUDIO CODING 383
7 ~: T7 T2 v! \( f, f, }5 c12.1 Introduction 383
' L5 I# i( x& O) S) d7 X; w12.2 Subjective Quality Measures 384( b1 l+ i/ }+ r' C
12.3 Confounding Factors in Subjective Evaluations 386% e* _: X, x) b( Z
12.4 Subjective Evaluations of Two-Channel Standardized Codecs 3874 X, ]3 s8 P  J. K( ?2 N  ?
12.5 Subjective Evaluations of 5.1-Channel Standardized Codecs 388; n  r, C. F' e. K/ r; w
12.6 Subjective Evaluations Using Perceptual Measurement Systems 389
+ m, z' Q) @5 G9 i- A8 F) n) Z12.6.1 CIR Perceptual Measurement Schemes 390- y" W- G" V  {7 @* |+ l
12.6.2 NSE Perceptual Measurement Schemes 390) D' c9 |) n9 z# }+ D
12.7 Algorithms for Perceptual Measurement 3911 Q( Q# h8 p; C! a: \
12.7.1 Example: Perceptual Audio Quality Measure (PAQM) 392+ R8 M4 S! [# k& B7 P( X
12.7.2 Example: Noise-to-Mask Ratio (NMR) 396: }7 y& @7 d1 x% u; p
12.7.3 Example: Objective Audio Signal Evaluation (OASE) 399% O' @* H" ^( s
12.8 ITU-R BS.1387 and ITU-T P.861: Standards for Perceptual
# B9 ^6 D! }$ k6 `. ~$ t' EQuality Measurement 401
$ \1 p5 K2 V; M; W: C. K3 f12.9 Research Directions for Perceptual Codec Quality Measures 402

Audio Signal Processing and Coding.pdf

3.1 MB, 下载次数: 4, 下载积分: 威望 -5

该用户从未签到

2#
发表于 2016-11-12 15:14 | 只看该作者
谢谢分享,必须赞一个~
9 u4 s+ ^* h) T2 k$ v8 J7 g/ }
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-6-22 12:14 , Processed in 0.078125 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表