找回密码
 注册
关于网站域名变更的通知
查看: 297|回复: 1
打印 上一主题 下一主题

Signal.Detection.and.Estimation

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2016-11-8 13:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Contents
" E. }" F) K7 ?/ i. FPreface xv
$ K" I4 c% r1 GAcknowledgments xvii/ z1 E2 Y: a5 G) x6 X
Chapter 1 Probability concepts 1! u6 U" M1 P7 d
1.1 Introduction 1
  |- V5 b; d- H$ c3 ~  V. Z- q0 ~1.2 Sets and Probability 1
' C9 h6 E  e5 Q, n/ }8 r' ?1.2.1 Basic Definitions 1% E, H7 w2 U% G, ?
1.2.2 Venn Diagrams and Some Laws 3! q' ~5 O) Z. E+ t1 E  T0 E! _6 H
1.2.3 Basic Notions of Probability 6; H, e' H% D- h2 t: n# ?2 [* y
1.2.4 Some Methods of Counting 8
9 K6 T7 c4 ?: k; T$ K  c1.2.5 Properties, Conditional Probability, and Bayes’ Rule 12( P+ D& q" D( z! q9 }. a/ a% s
1.3 Random Variables 17- r4 R. C7 c. I
1.3.1 Step and Impulse Functions 17& _; K0 ^( H* A4 G
1.3.2 Discrete Random Variables 18
7 U2 t3 w9 [" @5 V" C1.3.3 Continuous Random Variables 20
* c, p, m6 N7 K: O+ C; J* L1.3.4 Mixed Random Variables 22' [. `* b2 o& A9 y4 O: H. p) p
1.4 Moments 23
0 |. {! i7 H3 y3 {1.4.1 Expectations 23, R0 V2 M. Z' _/ w
1.4.2 Moment Generating Function and Characteristic Function 265 W9 t6 r  q8 r" H$ u( @* J# S6 }
1.4.3 Upper Bounds on Probabilities and Law of Large% [& g  q7 `# f0 z- o3 h+ @- n& U
Numbers 29
4 N  ?( C+ Y/ p: l: l1.5 Two- and Higher-Dimensional Random Variables 31% W9 o/ o4 r: z
1.5.1 Conditional Distributions 33
, X( g/ O: [3 J3 D+ J1.5.2 Expectations and Correlations 41
+ n3 C( Y! X9 |9 k1.5.3 Joint Characteristic Functions 44
/ `3 \; b  R" O; e! l( p4 a. x8 c8 g6 O1.6 Transformation of Random Variables 48  t2 X+ k- D+ [4 X- D  H
1.6.1 Functions of One Random Variable 49
* U6 Z; W1 C# x1.6.2 Functions of Two Random Variables 52) ~( m  V  \; q
1.6.3 Two Functions of Two Random Variables 59
" U1 p, ?' K$ v( G0 c1.7 Summary 65, r8 K6 a* T/ f( I, D$ M# ^7 l* z
Problems 656 z% {, K2 o# J# P& ~
Reference 73
0 A! w  D7 P6 a/ f" hSelected Bibliography 73& Q) A7 F" Y7 k5 R$ F7 E
Chapter 2 Distributions 75
6 C+ m8 Y- C. X9 v" V5 ?2.1 Introduction 75
" Y2 L; L* P) Z" H* {; _5 t/ |2.2 Discrete Random Variables 75: @; s8 `9 Y( p. ?: Q
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 75- y3 ]2 I) p# _2 N5 g/ a
2.2.2 The Geometric and Pascal Distributions 78
$ N8 {% x# q+ Q9 d, ^  u$ c2.2.3 The Hypergeometric Distribution 82
8 L4 e- `8 B7 Y: w3 G4 \# b: _2.2.4 The Poisson Distribution 85
4 T% ~2 L& T0 z2.3 Continuous Random Variables 88
0 i4 C: h( E  Q6 Z7 \2.3.1 The Uniform Distribution 88, c5 K* F8 W% b, D! H+ X4 T( F$ P
2.3.2 The Normal Distribution 89
7 o' G1 @6 @7 c; d4 Q  d) w* M$ ]2.3.3 The Exponential and Laplace Distributions 962 v+ c. e& W* q* k& |* _, e
2.3.4 The Gamma and Beta Distributions 986 P3 y( _5 \" O- E
2.3.5 The Chi-Square Distribution 101
+ d' T# X* F$ c  w$ _2.3.6 The Rayleigh, Rice, and Maxwell Distributions 106
  [- f9 H: |: H$ [8 M$ }5 e2.3.7 The Nakagami m-Distribution 1157 ]" Z. O/ [# N" Q
2.3.8 The Student’s t- and F-Distributions 115! Z% x% ~7 M3 Y% \" M" z
2.3.9 The Cauchy Distribution 1200 R% X+ z# \! {% e
2.4 Some Special Distributions 121
- y# q: ?* f* c- Q9 M- j. s2.4.1 The Bivariate and Multivariate Gaussian Distributions 121; t4 H1 d  {( a8 r$ R: h
2.4.2 The Weibull Distribution 129
9 s' W- N* ]9 [' ]2.4.3 The Log-Normal Distribution 131! h6 Y" O3 o7 ^
2.4.4 The K-Distribution 132
' Q  ]3 G5 a9 b8 A$ H' q7 p6 k2.4.5 The Generalized Compound Distribution 135
: s; `" P8 C$ p2.5 Summary 1363 I; T$ J5 f5 R# z* _3 b5 Z
Problems 137
+ h$ f- e3 S4 B# N: u$ H$ TReference 139- c) {" M& ?5 k( I; R/ v& c0 g
Selected Bibliography 139
8 v4 g: y/ k; ]Chapter 3 Random Processes 141
6 ]+ `/ V6 Z7 ]3.1 Introduction and Definitions 1413 H/ _+ _6 ^' b: f& R, D% x+ w
3.2 Expectations 145
9 U4 U2 B- F9 w  m; `* a3.3 Properties of Correlation Functions 153
- n( y( J% x: b" p* {, w  D3.3.1 Autocorrelation Function 153
3 t1 M7 w- [! K! ]1 _3.3.2 Cross-Correlation Function 1538 D& E  b4 A, u7 J' f: V. ^9 G
3.3.3 Wide-Sense Stationary 154  }* @" I2 Z/ E, C
3.4 Some Random Processes 1568 y. v) X/ T/ ^$ R( D, z9 T
3.4.1 A Single Pulse of Known Shape but Random Amplitude+ G7 d  N; D: O
and Arrival Time 156
, n/ x" ?3 l5 S5 r0 T4 x* @: c3.4.2 Multiple Pulses 157. {& X9 p9 X( l! u
3.4.3 Periodic Random Processes 158
" ~+ `$ c% |* M3.4.4 The Gaussian Process 161
- o2 {% f  V) {- L3.4.5 The Poisson Process 163, X6 a$ x7 `" _( E! b5 S5 X
3.4.6 The Bernoulli and Binomial Processes 166
% @9 ?3 \* C% j- n6 \0 n3.4.7 The Random Walk and Wiener Processes 1687 T$ g0 n8 g- t% a1 O1 c
3.4.8 The Markov Process 172
/ \4 _6 h: O% K- F3.5 Power Spectral Density 174' {+ x$ k7 [0 V7 c# e) v9 v3 q
3.6 Linear Time-Invariant Systems 178$ `/ L" z  ?& _, Y* y
3.6.1 Stochastic Signals 179
, w# j) d* J9 L& [% p0 f3.6.2 Systems with Multiple Terminals 185
" b# n( v, F; Z, k* G% v5 O3.7 Ergodicity 186
' A: D' b- {3 `6 H" a' }+ m3.7.1 Ergodicity in the Mean 186* ]; G  ]3 E! }4 _/ h* D
3.7.2 Ergodicity in the Autocorrelation 1876 G: S2 L: W" ^0 Q
3.7.3 Ergodicity of the First-Order Distribution 188
4 Y1 `: K7 C' m# ?* e; m' W3.7.4 Ergodicity of Power Spectral Density 188* v1 ?- D! E1 `$ n( w
3.8 Sampling Theorem 189
1 r6 E) a9 n8 e) h3.9 Continuity, Differentiation, and Integration 194
) _+ S' O  G2 J3.9.1 Continuity 194
( V) c! l( H8 ~, }, w' K8 [( D$ U3.9.2 Differentiation 196
9 @+ g/ w' u' G4 [& A: Y3.9.3 Integrals 199
9 E* t; L/ K& o5 w3.10 Hilbert Transform and Analytic Signals 201
  z; q- G# m- j/ g+ h2 ]3.11 Thermal Noise 205
' n- {4 L3 T; f& p8 [/ g4 k3.12 Summary 2116 }9 p$ e! r1 r! N0 D6 c
Problems 212( K' m7 ]8 S0 r7 E' e
Selected Bibliography 221
$ l5 l7 F+ w2 t0 u0 z5 d4 z. ZChapter 4 Discrete-Time Random Processes 223
0 M6 |! I- ^  W" X4.1 Introduction 2235 _- ~. M  M7 X& W
4.2 Matrix and Linear Algebra 224
/ E7 @/ W4 ^  j$ p" |! m, p4.2.1 Algebraic Matrix Operations 2243 f% ~' m& S6 x1 z, H# @
4.2.2 Matrices with Special Forms 232
. P: q" m6 m& `6 P) Q: u' F4.2.3 Eigenvalues and Eigenvectors 236# p0 \7 |9 i# X# S% \3 ~( L4 x
4.3 Definitions 245
& b  N$ T% |! _) `, M* L: \* T( R4.4 AR, MA, and ARMA Random Processes 2535 J! x" h# ]8 x  i# Y
4.4.1 AR Processes 254
! [/ P! D( o  N+ a- _4.4.2 MA Processes 2621 z3 G4 X7 ~$ S# o, m* V0 }" Y
4.4.3 ARMA Processes 264% e) H0 |, D2 L) |  |" L
4.5 Markov Chains 266) r9 k0 p( j/ i! e4 x/ W. z! u5 C
4.5.1 Discrete-Time Markov Chains 267
- D( }) B6 _! L% {( Y" Q4.5.2 Continuous-Time Markov Chains 2768 c7 I; ?7 M! @
4.6 Summary 284
" s$ j# ~& ]+ TProblems 284% R" D& y" G- O) a. |
References 287
$ R! Y1 i8 ^7 m: v  pSelected Bibliography 288
! c/ h- N5 g6 v3 RChapter 5 Statistical Decision Theory 289
6 j5 S  n; q: X2 Z, k- k% Z' |" V5.1 Introduction 2896 {$ @; i; j- o9 M: Q
5.2 Bayes’ Criterion 291
' u4 i0 p' x. U$ T. \. B5.2.1 Binary Hypothesis Testing 291
& u3 Z% {( x! C8 R! T" K5.2.2 M-ary Hypothesis Testing 303
, e* k' ~. i' N% ^! I- M1 u5.3 Minimax Criterion 313
( Q  \/ b; Z6 }* O5.4 Neyman-Pearson Criterion 317
; V$ K$ Q1 Z. B$ {9 k5.5 Composite Hypothesis Testing 326
/ B* ?$ O8 _, Q. A& ?/ w7 N# M5.5.1 Θ Random Variable 327
# p" k; p1 c3 d) _5.5.2 θ Nonrandom and Unknown 329$ ~  a1 M% I! I9 `" f& \
5.6 Sequential Detection 332
4 ^* U- }- F/ h# \" I5.7 Summary 337$ S; X2 k! n: Y
Problems 338
# Q# W/ j, v, D5 A% zSelected Bibliography 3437 E+ [* @6 y. |  o$ d0 u# q
Chapter 6 Parameter Estimation 345" U7 z& i) @8 ~6 f- G" t
6.1 Introduction 345& N. w8 P3 m' N& e: L) t
6.2 Maximum Likelihood Estimation 346# ?' p4 [: K1 f1 x
6.3 Generalized Likelihood Ratio Test 348' p7 ^5 `% l$ U, \) h3 w
6.4 Some Criteria for Good Estimators 353% o( [! p, |9 `% {$ O
6.5 Bayes’ Estimation 3551 O( V& p8 t& E9 {+ ]
6.5.1 Minimum Mean-Square Error Estimate 3575 l3 @# J1 ], U6 J. E5 K
6.5.2 Minimum Mean Absolute Value of Error Estimate 358
3 s# p: `. }8 y6.5.3 Maximum A Posteriori Estimate 359. \6 k1 G0 k$ N- V
6.6 Cramer-Rao Inequality 364
* y! n7 n$ S3 e' D6 K: b- s6.7 Multiple Parameter Estimation 3719 U, j3 g6 B3 D( i2 b* A: G
6.7.1 θ Nonrandom 371, Z% l8 k$ L+ r
6.7.2 θ Random Vector 376( l& o; b9 ]0 Q3 t/ O
6.8 Best Linear Unbiased Estimator 378
9 X4 D* P0 S: w  e3 `6.8.1 One Parameter Linear Mean-Square Estimation 379+ u( V, y6 p) ~+ d/ e9 d
6.8.2 θ Random Vector 381
) O* E6 G: Z/ v: M6.8.3 BLUE in White Gaussian Noise 383
( s% [) x1 W# r: Y0 Q+ P1 i6.9 Least-Square Estimation 388
4 Q5 m5 A5 \( [9 |) Z( l4 Q5 R+ X3 A# u4 x6.10 Recursive Least-Square Estimator 3914 K% H1 c) j1 T2 g) D
6.11 Summary 3936 q1 M6 L) q" ?8 L. F* H
Problems 394
" I1 U3 A' _( c- t6 a& J% YReferences 398
$ y, M/ z- v$ P6 hSelected Bibliography 398
2 }* `1 _1 y: |: x& c) S: _Chapter 7 Filtering 3991 M4 S% p2 k' r6 F) A& I
7.1 Introduction 399
9 J8 a, {% {# r" g& O7.2 Linear Transformation and Orthogonality Principle 400
" s; b5 ~, F% v6 p$ ~. D7 h7.3 Wiener Filters 409  ], i7 M6 w/ B6 j
7.3.1 The Optimum Unrealizable Filter 410
. Q$ ?8 C$ S0 I% s, z) [7.3.2 The Optimum Realizable Filter 416% I0 d. I$ Q$ J  B. x' h; q, A) P% M) t
7.4 Discrete Wiener Filters 4245 F: l& A  |, P
7.4.1 Unrealizable Filter 425$ E' U0 w5 x/ C# F/ {
7.4.2 Realizable Filter 426" O# O/ W6 ~! ~
7.5 Kalman Filter 436
0 Y) c7 i& n. G0 W, Y2 }9 y7.5.1 Innovations 437" b7 M: I; O/ b& b4 X
7.5.2 Prediction and Filtering 440
  j$ x/ b1 G4 J8 k% D  A# _7.6 Summary 445
6 K6 r! @' ^/ X: g) k$ kProblems 445
) v$ \! m+ u8 l3 GReferences 448
  q& b8 q+ h* L, t) i% lSelected Bibliography 448
9 B. U; F0 D9 Q: v% W5 ~Chapter 8 Representation of Signals 449" g4 B" ]* [0 b% O% [9 q; F
8.1 Introduction 4490 f/ H. n5 V- Z% O9 |
8.2 Orthogonal Functions 4490 |9 q. f/ z1 i3 k& L% Q/ j  k
8.2.1 Generalized Fourier Series 451
; H: O; V* Y$ [4 E( i  V8.2.2 Gram-Schmidt Orthogonalization Procedure 4555 A! i! W* ^6 s( n
8.2.3 Geometric Representation 458
8 z- y8 V2 t8 a' e8.2.4 Fourier Series 463
* r% U+ {. _* X1 s9 I0 H+ H# A8.3 Linear Differential Operators and Integral Equations 466& k. w4 f" k3 \( n5 {0 [; ]+ U
8.3.1 Green’s Function 470
" G0 y5 n$ D. D& v1 v, s. H$ y& w6 L8.3.2 Integral Equations 4714 C& d. Y+ q4 o* \% }( L- P- s
8.3.3 Matrix Analogy 479
& \! C& C: G8 g3 d8.4 Representation of Random Processes 480
! N' U7 Y/ k* g1 G: M7 m4 R8.4.1 The Gaussian Process 4838 r  I2 r% ~7 l% V2 f2 V
8.4.2 Rational Power Spectral Densities 487
* y% |/ N# b7 r. G8 L/ Z7 i% J8.4.3 The Wiener Process 492
, n  G: l' p( ]: q, H" @8.4.4 The White Noise Process 493
* `, c/ o$ {! {8.5 Summary 495
5 a5 d+ ]2 D0 DProblems 4965 N( p6 a7 N0 y% _2 y8 T5 l
References 500
. U. O+ X( E* c( vSelected Bibliography 500
4 N, Y1 u. D4 eChapter 9 The General Gaussian Problem 5038 b" \5 \4 J" ^* U) F8 G
9.1 Introduction 5035 x4 l1 p5 b; n9 t  d' r3 J1 i7 f  x
9.2 Binary Detection 503. m. x( j. L+ ~, ^3 S/ w
9.3 Same Covariance 505
/ p1 f7 M( a9 N; o# V9.3.1 Diagonal Covariance Matrix 508
: X; _  \! R' y6 g& S0 ]9.3.2 Nondiagonal Covariance Matrix 511, U- p  ]- N+ Z" G5 B) `* V7 T
9.4 Same Mean 5189 i6 ^% \0 K2 l  \
9.4.1 Uncorrelated Signal Components and Equal Variances 519- O6 G( c5 r+ [1 T3 a
9.4.2 Uncorrelated Signal Components and Unequal
; z$ }" N- K4 m# Z8 o  JVariances 522
. x: Y; S8 R/ }6 g% q) A* j9.5 Same Mean and Symmetric Hypotheses 5247 L) ]& H" q7 e9 ]
9.5.1 Uncorrelated Signal Components and Equal Variances 526
0 t* W0 ^! j  n! W6 v9.5.2 Uncorrelated Signal Components and Unequal# `+ D7 }+ v$ x+ o7 K% |( c9 n* R
Variances 528
9 k& B' v" j1 a. w1 K6 @  m2 T* Q- ^9.6 Summary 5297 h0 E9 W) L. e# F* Y3 U
Problems 530
# h7 j$ y  K+ a0 B' w0 M( u( IReference 532
2 r1 c9 |4 ~. vSelected Bibliography 532; I9 O0 o) `# g! B. r( y$ K  n% s
Chapter 10 Detection and Parameter Estimation 5337 {) t) @: X9 z  z" T6 {" T% {, ^' |
10.1 Introduction 533
, J, U6 q6 \8 y* i5 G( p10.2 Binary Detection 534# `- c0 I- f+ t/ K+ M4 R9 |
10.2.1 Simple Binary Detection 534. P; Y9 b8 `7 h# K4 N
10.2.2 General Binary Detection 543  I; h, e4 ]# U* P9 G! K5 ]
10.3 M-ary Detection 556
! A0 a- b' I7 Y( L3 H% ~0 K  c10.3.1 Correlation Receiver 557
5 h" ~* o# R- G9 C/ F9 s3 c; I10.3.2 Matched Filter Receiver 567
) A  Z9 h  T) W5 f10.4 Linear Estimation 572
- ~# u  ?3 m! z6 B! K/ J10.4.1 ML Estimation 573% {) F. X. s- A( `- x
10.4.2 MAP Estimation 575
7 A3 y" T7 ^  s: K- i% P10.5 Nonlinear Estimation 576
; a: M" L7 e( w0 M3 \. t# n2 a10.5.1 ML Estimation 576! E$ ~/ B9 s% O7 t- T% r. w7 H: s
10.5.2 MAP Estimation 579# U, E3 o+ y+ b; b5 w$ c! @
10.6 General Binary Detection with Unwanted Parameters 580
! W  ~/ N0 k. v) A6 U/ z9 w- W2 ^4 i10.6.1 Signals with Random Phase 5835 }' p5 s9 \: d( |0 Q
10.6.2 Signals with Random Phase and Amplitude 595
: h4 r3 f  M  @10.6.3 Signals with Random Parameters 598
! x( |1 M9 Y+ O8 [$ i10.7 Binary Detection in Colored Noise 606
" f$ {* D; ~  r! `; C10.7.1 Karhunen-Loève Expansion Approach 6077 u7 x" P/ U" u4 O5 D0 K7 A
10.7.2 Whitening Approach 611! {" |0 }5 _4 E
10.7.3 Detection PeRFormance 615
+ ^! S& a/ Z. y10.8 Summary 617' X. a$ @" a2 i, L; X% I- q& u2 y
Problems 618
4 E( b* ]/ M2 b" }- mReference 6268 u3 w% G0 M5 H& H
Selected Bibliography 626$ n1 s$ h4 r& c  l& G- B
Chapter 11 Adaptive Thresholding CFAR Detection 627
& k% J& D" W2 k$ z7 `2 S1 B11.1 Introduction 627
$ Z1 X  [1 e% x! E# A, z' c11.2 Radar Elementary Concepts 629
$ @4 q5 d5 U. Q% y" X3 V; p" p11.2.1 Range, Range Resolution, and Unambiguous Range 631$ U( d2 g# a" e* E! x# Z
11.2.2 Doppler Shift 633% I4 d& c; {& p! N3 G: h. B
11.3 Principles of Adaptive CFAR Detection 634
4 _4 O5 c( b. C& e" k11.3.1 Target Models 640
% s( D# p* y9 _0 K1 j7 R; m) S11.3.2 Review of Some CFAR Detectors 642
& O0 E* k9 p' ]0 j11.4 Adaptive Thresholding in Code Acquisition of Direct-
. T0 d$ v" E) K  [. F( v) F* ^Sequence Spread Spectrum Signals 648
3 i( Z2 }" D" y: Q8 Y) p11.4.1 Pseudonoise or Direct Sequences 649( u; V4 w3 d% j! {
11.4.2 Direct-Sequence Spread Spectrum Modulation 6529 {$ D2 ^; J4 k. _% O
11.4.3 Frequency-Hopped Spread Spectrum Modulation 655
- r# \$ s& W0 V' H6 M  K; L11.4.4 Synchronization of Spread Spectrum Systems 6552 x* `2 j# [1 s: j6 ]
11.4.5 Adaptive Thresholding with False Alarm Constraint 659
1 j7 Q  @7 s$ ~* G11.5 Summary 660# V$ d* G1 O  y! e; A- m4 ?' l
References 661
  G5 ~6 @7 d3 e  Q* w- H; fChapter 12 Distributed CFAR Detection 665/ Q0 n9 }" }' q8 A
12.1 Introduction 665
3 B1 H( O, Q+ }2 R12.2 Distributed CA-CFAR Detection 6663 P8 }! V' ^) Y4 {
12.3 Further Results 6702 W$ u& I0 |* i
12.4 Summary 671
8 v' D4 d; \; l3 h+ N0 d0 dReferences 672& _0 J. P* g! Y
Appendix 675
" V) ?8 }) x9 p' D- y, fAbout the Author 6835 G9 R. d3 K' k; x
Index 685
+ }# {3 N; K7 X8 R: [

Signal.Detection.and.Estimation.rar

4.24 MB, 下载次数: 2, 下载积分: 威望 -5

该用户从未签到

2#
发表于 2016-11-8 14:19 | 只看该作者
看贴学心得,回贴是美德( ?# {0 ?6 N" o1 S  I
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-23 22:49 , Processed in 0.171875 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表