找回密码
 注册
关于网站域名变更的通知
查看: 285|回复: 1
打印 上一主题 下一主题

Signal.Detection.and.Estimation

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2016-11-8 13:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Contents' r" \- n2 B3 M9 [
Preface xv7 w" x' h) G% c9 h
Acknowledgments xvii
/ H7 a; l: b3 m# E( b2 SChapter 1 Probability concepts 1
4 V+ V  |' \5 h) Z( r5 l1.1 Introduction 1
0 e0 c% M' ]& B. \$ m; T1.2 Sets and Probability 13 g0 ^' T% i; a5 O
1.2.1 Basic Definitions 18 f  i5 ^6 {" Q5 l
1.2.2 Venn Diagrams and Some Laws 3
7 V- W- T2 V7 R1 V( [1.2.3 Basic Notions of Probability 6# ?5 y; X. [. i; W9 V3 Q2 W
1.2.4 Some Methods of Counting 8
1 W2 W$ g' v( q6 K0 q# Z3 q& P1.2.5 Properties, Conditional Probability, and Bayes’ Rule 12! I6 P$ U. v3 N' h6 R" A
1.3 Random Variables 17. P9 H/ z. H! o5 o) C
1.3.1 Step and Impulse Functions 17
( _7 _9 o# x' T: ]3 n9 {/ x1.3.2 Discrete Random Variables 18" [9 L' E4 f" p3 e, S5 J% j
1.3.3 Continuous Random Variables 20
' r: A/ b( M# @. [( }5 r1.3.4 Mixed Random Variables 222 u( U" A( ~) k) {; G9 n
1.4 Moments 23' }# P$ s. o7 l2 l6 P( Y) u* A' q
1.4.1 Expectations 23
% F7 E6 z1 D2 r# ]0 X" J2 t1.4.2 Moment Generating Function and Characteristic Function 263 o8 X" O1 C, [" n& I7 T1 x( g& p
1.4.3 Upper Bounds on Probabilities and Law of Large8 J: \3 e' Z1 y/ V+ G+ w% m" d  [3 S
Numbers 29
5 h7 M! y) O9 p4 ]1.5 Two- and Higher-Dimensional Random Variables 31
" x3 q, o" G0 B, n1.5.1 Conditional Distributions 33
/ g1 f! Z) d2 @" n  c% `1.5.2 Expectations and Correlations 41  X" M  H+ p: N: B) @; a$ I0 g; N
1.5.3 Joint Characteristic Functions 443 E9 s' G: q( X  t  c: R+ ~
1.6 Transformation of Random Variables 48( K% g7 d! M1 A6 o" p/ B
1.6.1 Functions of One Random Variable 49' c  ?7 {. s0 `3 h5 b
1.6.2 Functions of Two Random Variables 52
+ i) m+ m" g* Y- p1 R4 @: E* Y1.6.3 Two Functions of Two Random Variables 592 b9 h; z5 ]) I- Z0 u% [
1.7 Summary 65# E2 a/ M7 H! g! {( ?" o6 {; Z
Problems 651 t0 I3 Q+ |! B  t
Reference 73
, \% k( r' I5 eSelected Bibliography 73
; e# x4 Y! W( O; B- G2 l- HChapter 2 Distributions 75! l# o2 Y7 e; e9 @- y0 n
2.1 Introduction 75
5 {" p: L5 H& e8 h- v+ ^+ g4 ?: B2.2 Discrete Random Variables 75) ^* }: J" Y3 {4 c/ u# {6 p
2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 754 N+ C$ I5 }" J. L, B4 q
2.2.2 The Geometric and Pascal Distributions 78! Q0 W% U3 f" F) k0 e1 j0 f
2.2.3 The Hypergeometric Distribution 82/ r( e( I6 e4 Z
2.2.4 The Poisson Distribution 85
& d# @3 R/ O: a# g1 ~2.3 Continuous Random Variables 88
# t! X; d3 U/ Z0 B0 r% `& Y2.3.1 The Uniform Distribution 88
4 E6 I) q% N( i; s2.3.2 The Normal Distribution 89
3 D& |8 I( ]7 H: A$ A! h- K  w2.3.3 The Exponential and Laplace Distributions 96
2 `, _( P* E' ?$ Y2 a4 s, U* r% I2.3.4 The Gamma and Beta Distributions 98
5 q2 p; v4 F) C# D6 V2.3.5 The Chi-Square Distribution 101) {+ y. R# J% f
2.3.6 The Rayleigh, Rice, and Maxwell Distributions 106
) @5 q+ k# ^7 }7 ~; v2.3.7 The Nakagami m-Distribution 115: e1 u* o4 C+ L
2.3.8 The Student’s t- and F-Distributions 115
$ D  g4 U1 b# R' l. C: E% ^! r2.3.9 The Cauchy Distribution 1204 D3 e, N# v. M4 e! ]  ]! |
2.4 Some Special Distributions 121
; h, U3 L" ~) g! c$ c) ]2.4.1 The Bivariate and Multivariate Gaussian Distributions 121- a: ~2 N( o$ s7 y& c7 W& Q( E' W1 P
2.4.2 The Weibull Distribution 129
) o; i: i2 s" m& K6 `1 }, x2.4.3 The Log-Normal Distribution 131/ {& }' w+ O3 @! W5 q
2.4.4 The K-Distribution 1326 E( b7 a6 z5 s' ]/ u0 M; W
2.4.5 The Generalized Compound Distribution 135
' [* D2 X( _5 j, f5 ^2.5 Summary 1365 A0 I8 _, E: m4 m
Problems 137
5 H6 ]# K( h- O) C" z7 c/ I9 SReference 139
2 m, G6 s, J8 Y4 _Selected Bibliography 139
6 \* j; ?9 T/ o( C  H- L& \/ `9 Z2 }Chapter 3 Random Processes 141$ ~& u8 v* F4 u3 x
3.1 Introduction and Definitions 141
! i1 Z) D: u+ ]. s) V2 B3.2 Expectations 145
+ E8 V  r0 j+ _/ S- X4 I3.3 Properties of Correlation Functions 153
& j8 x& ]8 t" ~) z0 i$ B* I3.3.1 Autocorrelation Function 153. e' y1 \  E0 m! n: O
3.3.2 Cross-Correlation Function 1535 y& \3 }/ r. g/ O. o
3.3.3 Wide-Sense Stationary 154) X$ K# b! {# \- O0 D/ u" _3 K& r& x
3.4 Some Random Processes 1566 ]3 G% G) N) J) r5 ]' Y5 v: F; }3 Q) |
3.4.1 A Single Pulse of Known Shape but Random Amplitude8 `- q. E9 K5 a; v
and Arrival Time 156  x# C2 m8 v! B0 v, @$ _1 ~
3.4.2 Multiple Pulses 157; y3 b3 A4 ?# m$ F$ P1 L  `
3.4.3 Periodic Random Processes 158! R2 u; \  @8 J" |
3.4.4 The Gaussian Process 161
4 m; c2 T& s8 U  z; y; U9 e) [3.4.5 The Poisson Process 163
8 k% p0 U9 a# i3.4.6 The Bernoulli and Binomial Processes 166# P( D# @/ A* G9 }. Z3 \
3.4.7 The Random Walk and Wiener Processes 168
; q0 x2 ?$ i# Z3 g. X3.4.8 The Markov Process 172" {/ e9 {7 t6 \6 O
3.5 Power Spectral Density 1744 {  e. Z) u4 W. a
3.6 Linear Time-Invariant Systems 178$ O. |# [0 A" x2 X: ^( P% a
3.6.1 Stochastic Signals 179
' ?1 ?) X9 j( s) T! t3.6.2 Systems with Multiple Terminals 1851 x( Q' i- |* `
3.7 Ergodicity 186
! ^4 x6 ^" u1 E" ]3.7.1 Ergodicity in the Mean 186( e, n3 M+ H( w9 I* Y# n
3.7.2 Ergodicity in the Autocorrelation 1873 n5 V/ i  u+ q5 l7 u% B% W* A
3.7.3 Ergodicity of the First-Order Distribution 188
" w5 m: O" c% X" q8 X/ ^# U6 w3.7.4 Ergodicity of Power Spectral Density 188
! ^* y4 Z1 ]8 L6 H3.8 Sampling Theorem 189
" y7 g  z( _% D& f3.9 Continuity, Differentiation, and Integration 194: V" z- K' L0 R' i; u
3.9.1 Continuity 194$ M- f. D" k  N/ Q% m  q
3.9.2 Differentiation 196
' }( J; N, L9 \" I9 p, D7 _9 `3 A) Y3.9.3 Integrals 199
1 i# Z8 S+ O5 t$ I/ N# h3.10 Hilbert Transform and Analytic Signals 201. F% P) y8 }2 `5 m8 S, U# E
3.11 Thermal Noise 2059 ?* R. \& V" s+ z% W" M$ A! ?
3.12 Summary 211" k8 |1 J% F5 |- W
Problems 212
% x6 H# E2 l+ W9 {, y+ G3 m& kSelected Bibliography 221
* R& e- J' C; H+ `5 `Chapter 4 Discrete-Time Random Processes 223
8 }! c9 V) m0 d1 r, i4.1 Introduction 223
  z) ?' k) |9 Q& I0 V4.2 Matrix and Linear Algebra 224
6 n# B, `7 b  C& \( I7 Q4.2.1 Algebraic Matrix Operations 224
3 Q$ e5 ?2 ^1 V1 g1 H4.2.2 Matrices with Special Forms 2326 A8 o' `$ z4 Q# k! P% Y! W* z
4.2.3 Eigenvalues and Eigenvectors 236
9 J+ v3 T5 ~4 k9 e) p0 h% j/ p9 p  j4.3 Definitions 245; c- i" y  Q7 G1 R( L& ~' Y& {
4.4 AR, MA, and ARMA Random Processes 253- l, f6 c6 N8 T- E5 }
4.4.1 AR Processes 254) P/ D& z3 F* H% X+ V  C) B
4.4.2 MA Processes 262
# q. B8 b- x# f' \3 D* ]2 M4.4.3 ARMA Processes 264' w$ f# H6 q4 J0 {
4.5 Markov Chains 266
1 w; U6 A6 @( h" Z4.5.1 Discrete-Time Markov Chains 267
$ c8 A3 c0 r/ U4.5.2 Continuous-Time Markov Chains 2761 E4 y, k+ r# K$ G
4.6 Summary 284
+ a6 ?9 ?0 s- ~" l4 q" \. @Problems 284
: M/ F2 F& S5 u, `2 k6 eReferences 287
3 n2 @8 ]8 Z1 @* z& U+ E& P. k, vSelected Bibliography 288
7 I: k/ O- J* BChapter 5 Statistical Decision Theory 289
& C: }0 l  ~* ?  l5.1 Introduction 2895 m2 x8 L& j4 w
5.2 Bayes’ Criterion 291
& ^+ a0 l3 M& R( r3 ~1 \5.2.1 Binary Hypothesis Testing 291/ V3 {- l+ t3 U" h2 K- \+ v8 j9 p% v
5.2.2 M-ary Hypothesis Testing 303: [/ _" C9 D% G: v# n- N/ j0 Y# D' X
5.3 Minimax Criterion 313
! f+ R  @. c* W5.4 Neyman-Pearson Criterion 317) j: w# t1 D+ {% q
5.5 Composite Hypothesis Testing 326# Y8 ~, \: u' s) v8 m
5.5.1 Θ Random Variable 327
: X6 f1 D1 b1 [! ~8 R( K5.5.2 θ Nonrandom and Unknown 329$ U. [3 |$ r" m% J6 F  v+ q
5.6 Sequential Detection 332
, Z: W9 F, v$ |5 d7 a5.7 Summary 337
9 @% l6 d2 i  b4 dProblems 338
' O/ i: h. c- [$ KSelected Bibliography 343. ~0 U' h1 r5 J0 W
Chapter 6 Parameter Estimation 345
& c% J) Q% q1 c4 t, X$ X8 x6.1 Introduction 345
3 s- z$ n, ]( X! r% u" Q; \6.2 Maximum Likelihood Estimation 3466 |3 [" x: V2 W* a9 C% d
6.3 Generalized Likelihood Ratio Test 348. k3 _/ a  R2 Y
6.4 Some Criteria for Good Estimators 353( @' J$ g; G1 ?# \# g
6.5 Bayes’ Estimation 3552 q4 R- u- {1 b. u. i4 q0 @8 \
6.5.1 Minimum Mean-Square Error Estimate 357
7 \6 |8 ]2 s' w$ ?. s9 i; N6.5.2 Minimum Mean Absolute Value of Error Estimate 358$ R- C( K& v  ^9 r0 {( g1 F) J
6.5.3 Maximum A Posteriori Estimate 359
+ E5 ~  w' F' V( H5 i. n6.6 Cramer-Rao Inequality 364
+ z" Y: ^, g1 z0 `6.7 Multiple Parameter Estimation 371
7 l8 {) E) Q' w& Z8 y! J) K0 R% C6.7.1 θ Nonrandom 371' Q+ }' h0 L0 `. \# l
6.7.2 θ Random Vector 376
; N1 F6 J4 y% |0 D+ f' w6.8 Best Linear Unbiased Estimator 378! ~; D% p# `# {. e2 S
6.8.1 One Parameter Linear Mean-Square Estimation 3796 R2 F* a" U) k
6.8.2 θ Random Vector 381( U) ^/ G( @/ h. q2 z
6.8.3 BLUE in White Gaussian Noise 383: c4 \. m0 g8 H
6.9 Least-Square Estimation 3889 ~+ L1 K1 B" z) Q' C5 a
6.10 Recursive Least-Square Estimator 391
7 d" P0 y$ _7 f- [# V6.11 Summary 393
; o9 r6 |: `# E& |; YProblems 394
% y2 ]+ M% d" l) S8 zReferences 398
4 n8 |' g( p7 C6 U5 F7 Q4 D" h1 d8 z! Q: QSelected Bibliography 398' |2 o- d( c! a. W
Chapter 7 Filtering 3990 f9 `' v9 L' q; x8 F0 {
7.1 Introduction 399, Z$ G+ [+ P) m1 j* g
7.2 Linear Transformation and Orthogonality Principle 400, C9 E! K( J5 Y
7.3 Wiener Filters 409
# W4 F4 K2 w: |% `' H: K  z7.3.1 The Optimum Unrealizable Filter 4103 f& |. g: u& I! _
7.3.2 The Optimum Realizable Filter 416- k+ |- R! p6 L! x
7.4 Discrete Wiener Filters 4243 q% c3 G3 L+ g. x) J
7.4.1 Unrealizable Filter 425
2 I, B7 e, E7 `/ \. [- x0 R7 q+ w7.4.2 Realizable Filter 426
. J: a8 P- X# x7.5 Kalman Filter 436
7 c, n! |) E  m# j' T9 U7 W& d7.5.1 Innovations 437
4 N5 q0 s& a% K+ _" W0 u+ n7.5.2 Prediction and Filtering 440  t8 i$ T# X6 ?
7.6 Summary 445
7 F9 C. P* B& d, o7 a: P5 P5 t8 N2 |  [Problems 4459 c% A) G$ c. s$ W
References 448
3 h0 h, B* a$ s9 t  pSelected Bibliography 448; V0 j$ t5 R! h& O7 X6 b
Chapter 8 Representation of Signals 449
: g, K$ ^6 B8 l& g8 O! B8.1 Introduction 449
" Q4 n* z6 i5 M: |0 S: D8.2 Orthogonal Functions 449
% l+ E( ]* g. H- e! Z6 |) h8.2.1 Generalized Fourier Series 451
" s$ O( q  J, c2 n9 e8.2.2 Gram-Schmidt Orthogonalization Procedure 455
$ M+ I  U5 V" N/ \, p# z8.2.3 Geometric Representation 458, F0 c! ]; ~. L  J; X" E. B7 V$ z: J
8.2.4 Fourier Series 463& d# Z6 q3 d) S. Z# e/ p
8.3 Linear Differential Operators and Integral Equations 466; Y/ \6 |; s  y  T& q( v
8.3.1 Green’s Function 470# f. ]; ^1 K# w4 T# |/ }
8.3.2 Integral Equations 471
- Y8 a" I  V+ h& E1 ?2 c, Y8.3.3 Matrix Analogy 479
" H* z* i, E, x/ o# Y/ j8.4 Representation of Random Processes 480
5 @4 h! o  J3 a: W5 G! `& A8.4.1 The Gaussian Process 483
0 R; l) p3 R$ f, ?& ]+ f0 E8.4.2 Rational Power Spectral Densities 487
9 o/ n: l2 X1 T. w  `8.4.3 The Wiener Process 492
5 p5 |6 i: g/ v7 f! g8.4.4 The White Noise Process 4931 k( B- a( `/ ^, l4 O9 x6 F+ Y
8.5 Summary 495; ~  F! m" v6 t" W
Problems 496
9 Z. Z8 m: B- zReferences 500$ h5 ?9 a! g' I( A
Selected Bibliography 500
# X0 k: ]' e! Q, mChapter 9 The General Gaussian Problem 503
6 d# g1 h, S( S; n9.1 Introduction 503* c7 Z( A1 E0 d% q, X. I. i9 v* u
9.2 Binary Detection 503' |$ u* p# v: E) N
9.3 Same Covariance 505+ G9 I3 |9 |# i- B) s+ M
9.3.1 Diagonal Covariance Matrix 508
6 M3 _0 q7 @0 B/ P7 t9.3.2 Nondiagonal Covariance Matrix 511
! W9 b5 q+ I2 `  b2 ^9.4 Same Mean 5182 E1 h1 J9 L) |
9.4.1 Uncorrelated Signal Components and Equal Variances 519
7 W, m! C, n; o9 p2 t" M9.4.2 Uncorrelated Signal Components and Unequal
  m4 J/ x9 A% w/ v" C; RVariances 522
. h: T" Z& b, l9.5 Same Mean and Symmetric Hypotheses 524
( r- c% \) k- K/ N. T( q9.5.1 Uncorrelated Signal Components and Equal Variances 5264 q+ ]- N) S' `8 G7 A' z$ C
9.5.2 Uncorrelated Signal Components and Unequal" E% l' A* }7 P
Variances 5281 r# w  t/ R% U7 Y- U* b
9.6 Summary 5295 ?6 _3 \8 Q4 i) T, z1 x1 [5 D
Problems 530
. i, x# F' R1 }5 w. F  q$ b' q5 n5 CReference 532
0 U! b" R( [: y/ }9 |Selected Bibliography 532. ^3 X) v" L  P! z9 l0 Z# h* V
Chapter 10 Detection and Parameter Estimation 533
; i% r2 @. f2 j10.1 Introduction 533% T' Z) a+ U+ J( p
10.2 Binary Detection 534
3 R% h' ~& C2 x6 `5 X10.2.1 Simple Binary Detection 534
5 G+ D  ~% H! l9 i10.2.2 General Binary Detection 543% }( B+ H* q8 C! q" }1 w, ]- b# ?6 r
10.3 M-ary Detection 5564 l5 K( _1 c6 K5 E! b: }9 n4 ^
10.3.1 Correlation Receiver 557
  [0 w; D6 }7 P( L% L% j$ L7 I10.3.2 Matched Filter Receiver 567  z/ S" A2 u+ K$ ]* G( ^6 |& D
10.4 Linear Estimation 572: u% V3 A1 Q+ C  Q/ c' V# g- k
10.4.1 ML Estimation 573  z* [2 A# R7 j- }/ {% S
10.4.2 MAP Estimation 575
1 _" s, f) T. G. d: J: P+ h' E* B10.5 Nonlinear Estimation 576
) S/ K+ ~2 P8 Z1 F* M% x10.5.1 ML Estimation 576' R7 x/ M/ S2 s; t4 p2 c
10.5.2 MAP Estimation 579
8 m% Q8 m, u# @9 y3 s+ W  l8 ~10.6 General Binary Detection with Unwanted Parameters 580
9 Y2 A8 P) V" M1 Q4 X10.6.1 Signals with Random Phase 583- r0 E: C5 ^5 r1 f; f) D
10.6.2 Signals with Random Phase and Amplitude 595( }% _$ i. t( H; y6 l( \' m
10.6.3 Signals with Random Parameters 598
& Z: J$ J- T8 \: J1 S10.7 Binary Detection in Colored Noise 606
$ m" ~0 @. ]. s+ |# {$ E, _10.7.1 Karhunen-Loève Expansion Approach 6079 M+ M4 D) m. g7 x8 B$ `
10.7.2 Whitening Approach 611
2 [- H4 n3 U3 P6 |, G  ~  p10.7.3 Detection PeRFormance 6152 M6 t3 I' H) g0 s% Y
10.8 Summary 617( i- v7 m" L1 S  B
Problems 618
8 z  L2 D6 b3 K" N; ]7 s" bReference 6263 M1 v7 R' A& Y4 R6 v2 T
Selected Bibliography 626
1 P! Q6 ?2 n6 R; M, G$ G" h% `. gChapter 11 Adaptive Thresholding CFAR Detection 6279 R" }$ i  z5 Q* W- q8 ?
11.1 Introduction 627
4 t9 t+ p% e8 D11.2 Radar Elementary Concepts 629# Z, _8 s: _1 ~1 j$ {
11.2.1 Range, Range Resolution, and Unambiguous Range 631
. @  J, I2 W& ~, C# W11.2.2 Doppler Shift 633
2 S5 j$ O! |# s11.3 Principles of Adaptive CFAR Detection 634, |; f$ V7 w" v% y' \! ?. _# [( Q2 j
11.3.1 Target Models 640
4 V- D" V3 H& I! V1 j' z11.3.2 Review of Some CFAR Detectors 642
; r6 h- r* S/ w- l3 C  a11.4 Adaptive Thresholding in Code Acquisition of Direct-* C4 e( R8 \9 ]/ @5 O
Sequence Spread Spectrum Signals 648
4 O% m0 @4 Z' J, O$ G6 H9 U11.4.1 Pseudonoise or Direct Sequences 649
4 p' o9 m9 V' ~, _11.4.2 Direct-Sequence Spread Spectrum Modulation 652
6 j* B' p$ C: v8 D5 Y# f! s11.4.3 Frequency-Hopped Spread Spectrum Modulation 655
. e9 ?) |2 [' G) w11.4.4 Synchronization of Spread Spectrum Systems 655. k) w+ q8 f2 d% L; }+ w8 f  g! T
11.4.5 Adaptive Thresholding with False Alarm Constraint 659
% y3 u: ~( c+ j9 n$ X11.5 Summary 660& O3 i# _+ [+ ?* @1 |& ^
References 661
( V( }1 b4 |. s6 LChapter 12 Distributed CFAR Detection 665
' X0 k3 e4 l$ Z" D1 N12.1 Introduction 665
, P& U! [6 P  v0 v4 q12.2 Distributed CA-CFAR Detection 666# g+ p# W' w0 i& {: t$ O
12.3 Further Results 670
* g' s% G5 E1 Y# r6 a  b3 j12.4 Summary 6717 M  w8 q5 t- y' I# ^7 T/ `
References 6722 v- N; X$ r/ f! L) h% i# H
Appendix 675" n3 i6 ~. h+ b( S, ~
About the Author 683  O& M+ B# x# o  F
Index 6857 B) p! \2 n; p# b7 P! D% c! d

Signal.Detection.and.Estimation.rar

4.24 MB, 下载次数: 2, 下载积分: 威望 -5

该用户从未签到

2#
发表于 2016-11-8 14:19 | 只看该作者
看贴学心得,回贴是美德2 Z- }/ D* y) s
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-9-9 00:36 , Processed in 0.140625 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表