|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design
4 X0 M4 C. P0 U3 t7 ~Overview# j; l% V& w \
System Theory c1 K$ b9 y9 x* M
Effects of Nonlinearities, Q, k0 e# T! |# b( ~+ I5 @6 p( M% Q/ U8 o- I
Gain Compression' _: `2 F9 f2 i& Z/ ]. M
Desensitization and Blocking6 q$ U1 f# ^2 n, I6 Z
CroSSModulation% M8 y# U* v7 K/ g
Intermodulation
- C" @0 L6 G6 SAdjacent Channel Power Rejection
7 x2 l! @) v. R9 `# PRandom Signals
. ], p: e6 b. Q, s+ X7 ~Noise and Noise Figure
& j5 Y" S2 w9 G+ c" t4 iInput Referred Noise( `9 u2 e- r: I+ c% X
Noise Figure of Lossy
) e; V4 z' @% r/ D1 m: p! b
0 x3 }1 m5 i& ^8 [
( F) ^+ Q5 F: @# g5 a! O. TSystem Theory (1)# {& l: [+ W k
Linear Systems7 f3 S+ n$ j1 s' e% l
1 1 x ® y 2 2 x ® y3 c3 t& \$ }$ _; N
1 2 1 2 ax + bx ®ay + by
M. J2 W0 b( F7 l; w, FIf inputs x1 and x2 generate outputs y1, y2
( R- f0 e9 m3 ]For a linear system output can be expressed as a linear combination of inputs
0 G: E1 l6 k, c. E. s( K) Mfor all values of the constants a and b$ D7 X* `+ S5 E( j) n
Time Invariant Systems. ?8 a9 W" p! s! B8 R; w3 _( X* U, O
For a time invariant system time shift in input results in the same time shift in output M/ b+ X. X3 {! A) H# O
x(t )® y(t ) then x(t -t )® y(t -t )
L: V2 \& t0 L k3 ~Any system that does not satisfy this condition is nonlinear
- J1 t# V B8 dObs. A system is nonlinear if it has nonzero initial conditions
) g4 r3 ^% T; i6 t) @. b9 Gfor all values of t* V/ Y2 p) j* p9 i, A
8 j7 j/ d* M j% o5 @3 k. S
% g: ^ d2 v4 F C
0 C O) U0 D2 G+ N6 D |
|